Some review problems for Final

1. Review Homework 5, 6, 7, 8.
2. Review all lecture worksheets starting from Worksheet 7.
3. Review recitation worksheets $6,7,8,9,10$.
4. Let $G: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ be a linear map given by $G(u)(x)=(x+1) u^{\prime}(x)-u(x)$. Is G diagonalizable? If it is, find a basis of $P_{2}(\mathbb{R})$ in which G is represented by a diagonal matrix.
5. Let $V=P_{2}(\mathbb{C})$. Show that the operator (\cdot, \cdot) given by

$$
(u, v)=u(0) \overline{v(0)}+u(1) \overline{v(1)}+u(2) \overline{v(2)} \quad \forall u, v \in V
$$

is an inner product on V.
6. On $M_{2 \times 2}(\mathbb{R})$, consider an operator $\|\cdot\|$ given by $\|A\|=|a|+|b|$ for all $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Is $\|\cdot\|$ a norm on $M_{2 \times 2}(\mathbb{R})$?
7. Let $V=M_{2 \times 2}(\mathbb{C})$. The inner product on V is given by

$$
(A, B)=a_{11} \overline{b_{11}}+a_{12} \overline{b_{12}}+a_{21} \overline{b_{21}}+a_{22} \overline{b_{22}}=\operatorname{trace}\left(B^{*} A\right) .
$$

Consider a linear map $f: V \rightarrow V$ given by $f(A)=A C-C A$ where

$$
C=\left[\begin{array}{ll}
0 & i \\
1 & 0
\end{array}\right] .
$$

Find f^{*}. Is f an unitary map?

