Some review problems for Final

- 1. Review Homework 5, 6, 7, 8.
- 2. Review all lecture worksheets starting from Worksheet 7.
- 3. Review recitation worksheets 6, 7, 8, 9, 10.
- 4. Let $G : P_2(\mathbb{R}) \to P_2(\mathbb{R})$ be a linear map given by G(u)(x) = (x+1)u'(x) u(x). Is G diagonalizable? If it is, find a basis of $P_2(\mathbb{R})$ in which G is represented by a diagonal matrix.
- 5. Let $V = P_2(\mathbb{C})$. Show that the operator (\cdot, \cdot) given by

$$(u,v) = u(0)\overline{v(0)} + u(1)\overline{v(1)} + u(2)\overline{v(2)} \quad \forall u, v \in V$$

is an inner product on V.

- 6. On $M_{2\times 2}(\mathbb{R})$, consider an operator $\|\cdot\|$ given by $\|A\| = |a| + |b|$ for all $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Is $\|\cdot\|$ a norm on $M_{2\times 2}(\mathbb{R})$?
- 7. Let $V = M_{2 \times 2}(\mathbb{C})$. The inner product on V is given by

$$(A, B) = a_{11}\overline{b_{11}} + a_{12}\overline{b_{12}} + a_{21}\overline{b_{21}} + a_{22}\overline{b_{22}} = \operatorname{trace}(B^*A).$$

Consider a linear map $f: V \to V$ given by f(A) = AC - CA where

$$C = \begin{bmatrix} 0 & i \\ 1 & 0 \end{bmatrix}.$$

Find f^* . Is f an unitary map?