
Homework 1
Answer Key

1. Let V be a vector space over a field F (which is Q, R, or C). Use the axioms of vector space
to show the following properties. Make sure to mention which axiom(s) you use.

(a) (Cancellation law) If u1, u2, v ∈ V and u1 + v = u2 + v, then u1 = u2.

Solution: Let u1, u2, v ∈ V and assume

u1 + v = u2 + v.

Let w be an additive inverse of v (w exists by the additive inverse axiom). By adding w
to both sides we get

(u1 + v) + w = (u2 + v) + w

Notice that we need to keep (u1 + v) and (u2 + v) grouped, since addition is technically
only defined between two vectors and not three. Now apply the associativity of addition
axiom:

u1 + (v + w) = u2 + (v + w)

By the definition of the additive inverse, v + w = 0 where 0 is an additive identity or
“neutral element”. We can then write

u1 + 0 = u2 + 0.

We use the additive identity axiom to simplify

u1 + 0 = u1 and u2 + 0 = u2.

If your definition of the additive identity axiom uses the opposite ordering (i.e., 0+v = v
instead of v+0 = v) then you technically need to apply commutativity of addition before
making the above reductions. Now apply these reductions to both sides of the equation
to conclude

u1 = u2.

(b) (Uniqueness of zero element) If a and b are neutral elements of V , i.e.

a+ v = v ∀v ∈ V,
b+ v = v ∀v ∈ V,

then a = b.

Solution: Let a and b be neutral elements or “additive identities” of V as defined above
and consider v = b. Then

a+ b = b, and

b+ b = b.

Therefore we can write
a+ b = b+ b.

By applying the cancellation law (problem 1.(a)) we can cancel b to conclude that

a = b
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(c) (Scaling by 0)
0v = 0 ∀v ∈ V.

Solution: Note that the zero on the left represents a scalar, and the zero on the right
represents a vector. To make this proof easier to follow, I will denote the scalar zero by
0 and the vector zero by ~0.

Let v ∈ V and consider the fact that (0 + 0) = 0 (remember, this is an equation of
scalars). Now we can write

(0 + 0)v = 0v

Since 0v = ~0 + 0v by the additive identity axiom, we can rewrite the left-hand side of
the equation:

(0 + 0)v = ~0 + 0v

By using distribution over scalar addition we can rewrite the right-hand side:

0v + 0v = ~0 + 0v

Now we can use the cancellation law (problem 1.(a)) to conclude

0v = 0.

(d) (Additive inverse) If v, w ∈ V satisfy v + w = 0 then w = (−1)v (vector v scaled by
factor −1).

Solution: Let v, w ∈ V and suppose v +w = 0. By problem 1.(c) we can write 0 = 0v,
so

v + w = 0v

Now use the scalar equation 0 = (1 + [−1]) to write

v + w = (1 + [−1])v.

Apply distribution over scalar addition:

v + w = 1v + (−1)v.

The multiplicative identity axiom gives 1v = v, so we can rewrite the equation as

v + w = v + (−1)v.

Now you might want to use problem 1.(a), but we have to be careful here. Notice that
when we proved the cancellation law, the vector we were canceling was on the right
side of the addition, but in this case we want to cancel the vector on the left side of
the addition. Use commutativity of addition to switch the order of both sides of the
equation first:

w + v = (−1)v + v.

We can now use problem 1.(a) to conclude

w = (−1)v.
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2. On the set of complex numbers C, we define another product rule as follows:

z ∗ v = z̄v ∈ C.

The star denotes the new product rule. The product on the right hand side is the usual
product of complex numbers. Here z̄ denotes the complex conjugate of z. Show that V = C
is a vector space over F = C under the usual addition and the new product rule.

Solution: To show that this is a vector space we need to show that it satisfies the vector
space axioms. Since we are still using ordinary addition, all of the addition axioms still hold
just as they did under the standard vector operations in C. We only need to check the scaling
and distribution axioms.

Recall that every element z ∈ C can be written at z = a + bi for a, b ∈ R. The complex
conjugate is then defined as

z̄ = a− bi.

We now prove the axioms:

(i) Closed under scalar multiplication: Let z ∈ F = C and v ∈ V = C. Then z̄ and v
are both complex numbers, so their product z̄v = z ∗ v is also a complex number.

(ii) Multiplicative identity: Consider z = a+ bi ∈ C. If z = 1 then a = 1 and b = 0, so

1̄ = 1− 0i = 1.

Therefore

1 ∗ z = 1̄z

= 1z

= z.

(iii) Associativity of scalar multiplication: Let w, z ∈ F = C. We will need the fact
that

wz = w̄z̄.

To prove this, let w = a+ bi and z = c+ di. First expand wz:

wx = (ac− bd) + (bc+ ad)i

= (ac− bd)− (bc+ ad)i

Now expand w̄z̄:

w̄z̄ = (a− bi)(c− di)
= ac− adi− bci− bd
= (ac− bd)− (bc+ ad)i.

From this we conclude that wz = w̄z̄.

We can now prove associativity of scalar multiplication. Let w, z ∈ F = C and
v ∈ V = C. Then

(wz) ∗ v = wzv

= w̄z̄v

= w̄(z ∗ v)

= w ∗ (z ∗ v).
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(iv) Distribution over vector addition: Let z ∈ F = C and u, v ∈ V = C. Then

z ∗ (u+ v) = z̄(u+ v)

= z̄u+ z̄v

= z ∗ u+ z ∗ v.

(v) Distribution over scalar addition: Let w, z ∈ F = C. We will need the fact that

w + z = w̄ + z̄.

To prove this, let w = a+ bi and z = c+ di. Then

w + z = (a+ c) + (b+ d)i

= (a+ c)− (b+ d)i

= (a− bi) + (c− di)
= w̄ + z̄.

We can now prove distribution over scalar addition. Let w, z ∈ F = C and v ∈ V = C.
Then

(w + z) ∗ v = (w + z)v

= (w̄ + z̄)v

= w̄v + z̄v

= w ∗ v + z ∗ v.
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3. Let F be a field of numbers. Put

V = {A ∈M2×2(F ) : A+AT = 0}.

(a) Show that V is a vector space over F . Here AT denotes the transpose of matrix A.

Solution: Notice that V is a subset of the vector space M2×2(F ), so we only need to
show that V is a subspace of M2×2(F ). This requires proving three axioms. Before we
begin, we note two facts from MTH 341 that will be useful:

• (A+B)T = AT +BT for all A,B ∈M2×2(F ).
• (λA)T = λ(AT ) for all A ∈M2×2(F ) and λ ∈ F .

(i) V contains the zero vector: In M2×2(F ), the zero vector is the 2×2 zero matrix.
It is easy to check that this is in V :[

0 0
0 0

]
+

[
0 0
0 0

]T
=

[
0 0
0 0

]
+

[
0 0
0 0

]
=

[
0 0
0 0

]
.

(ii) V is closed under addition: Let A,B ∈ V . This means that A + AT = 0 and
B +BT = 0 where 0 represents the zero matrix. Now

(A+B) + (A+B)T = A+B +AT +BT

= (A+AT ) + (B +BT )

= 0 + 0

= 0,

so (A+B) ∈ V .

(iii) V is closed under scalar multiplication: Let A ∈ V and λ ∈ F . Then

(λA) + (λA)T = λ(A) + λ(AT )

= λ(A+AT )

= λ0

= 0,

so (λA) ∈ V .

Since V is a subspace of M2×2(F ), V is a vector space.
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(b) Find a basis and the dimension of V .

Solution: It is helpful to rewrite the elements of V . Let

A =

[
a b
c d

]
, a, b, c, d ∈ F.

Then

A+AT =

[
a b
c d

]
+

[
a b
c d

]T
=

[
a b
c d

]
+

[
a c
b d

]
=

[
2a b+ c
b+ c 2d

]
If A ∈ V then [

2a b+ c
b+ c 2d

]
=

[
0 0
0 0

]
which gives the equations

2a = 0,

b+ c = 0,

2d = 0.

From this we can deduce that a = d = 0 and c = −b, so V can be rewritten as

V =

{[
0 b
−b 0

]
: b ∈ F

}
=

{
b

[
0 1
−1 0

]
: b ∈ F

}
Our proposed basis for V is

B =

{[
0 1
−1 0

]}
(note that B is a set, not a matrix). We need to check the properties of a basis:

(i) It is easy to check that B ⊂ V .

(ii) Our rewriting of V shows that span(B) = V .

(iii) Since B has exactly one nonzero element, B is linearly independent.

Therefore B is a basis for V . Since B has exactly one element, the dimension of V is

dim(V ) = 1.
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4. Let V = Q(1,3)∩Q, which is the set of all functions from (1, 3) ∩ Q to Q. Recall that V is a
vector space over F = Q.

(a) Do the functions f(x) = x
x−2 and g(x) =

√
x belong to V ?

Solution: These functions do not belong to V .

• The function f(x) is not defined at x = 2 ∈ (1, 3) ∩ Q, so it cannot be a function
from (1, 3) ∩Q.

• It is a well known fact that
√

2 6∈ Q (I won’t give the proof here, but you can look it
up online). Therefore g(2) 6∈ Q, so g(x) cannot be a function from (1, 3) ∩Q to Q.

(b) Consider three functions f1(x) = x − 1, f2(x) = x, and f3(x) = 1/x. They are vectors
in V . Show that f1, f2, f3 are linearly independent.

Solution: To prove this set is linearly independent, set a linear combination equal to 0:

c1f1(x) + c2f2(x) + c3f3(x) = 0.

Note that this equation must hold for all x ∈ (1, 3) ∩ Q. We want to show that c1 =
c2 = c3 = 0. To do this, we can plug in three different values for x to get three equations
with three unknowns. We must choose values in (1, 3) ∩Q. I chose

x =
3

2
, x = 2, x =

5

2
.

Plugging each of these into our equation gives the following system of equations:

1
2c1 + 3

2c2 + 2
3c3 = 0

c1 + 2c2 + 1
2c3 = 0

3
2c1 + 5

2c2 + 2
5c3 = 0

It is probably easier to work with whole numbers rather than fractions, so multiply the
first equation by 6, the second equation by 2, and the third equation by 10:

3c1 + 9c2 + 4c3 = 0

2c1 + 4c2 + c3 = 0

15c1 + 25c2 + 4c3 = 0

We can write this system in augmented matrix form: 3 9 4 0
2 4 1 0
15 25 4 0


The next step is to reduce this matrix to find that c1 = c2 = c3 = 0. The row reduction
is tedious, so I will use MATLAB:

A = [3 9 4 0;

2 4 1 0;

15 25 4 0];

R = rref(A);

You should get

R =

1 0 0 0
0 1 0 0
0 0 1 0


showing that c1 = c2 = c3 = 0. Therefore the vectors f1, f2, f3 are linearly independent.
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