Homework 1

Due 01/17/2020
In the following problems, make sure to write your arguments coherently in full sentences. Start a sentence with words rather than a formula. Use words to transition your ideas, for example "This leads to", "Therefore", "We want to show", etc.

1. Let V be a vector space over a field F (which is \mathbb{Q}, \mathbb{R}, or \mathbb{C}). Use the axioms of vector space to show the following properties. Make sure to mention which axiom(s) you use.
(a) (Cancellation law) If $u_{1}, u_{2}, v \in V$ and $u_{1}+v=u_{2}+v$, then $u_{1}=u_{2}$.
(b) (Uniqueness of zero element) If a and b are neutral elements of V, i.e.

$$
\begin{array}{cl}
a+v=v & \forall v \in V, \\
b+v=v & \forall v \in V,
\end{array}
$$

then $a=b$.
Note: Because the neutral element is unique, it is denoted by 0 and is called the zero vector.
(c) (Scaling by 0)

$$
0 v=0 \quad \forall v \in V .
$$

(d) (Additive inverse) If $v, w \in V$ satisfy $v+w=0$ then $w=(-1) v$ (vector v scaled by factor -1).
Note: the additive inverse of v is denoted as $-v$.
2. On the set of complex numbers \mathbb{C}, we define another product rule as follows:

$$
z * v=\bar{z} v \quad \forall z, v \in \mathbb{C} .
$$

The star denotes the new product rule. The product on the right hand side is the usual product of complex numbers. Here \bar{z} denotes the complex conjugate of z. Show that $V=\mathbb{C}$ is a vector space over $F=\mathbb{C}$ under the usual addition and the new product rule.
3. Let F be a field of numbers. Put

$$
V=\left\{A \in M_{2 \times 2}(F): A+A^{T}=0\right\} .
$$

(a) Show that V is a vector space over F. Here A^{T} denotes the transpose of matrix A.
(b) Find a basis and the dimension of V.

Do the following problem for 6 bonus points.
4. Let $V=\mathbb{Q}^{(1,3) \cap \mathbb{Q}}$, which is the set of all functions from $(1,3) \cap \mathbb{Q}$ to \mathbb{Q}. Recall that V is a vector space over $F=\mathbb{Q}$.
(a) Do the functions $f(x)=\frac{x}{x-2}$ and $g(x)=\sqrt{x}$ belong to V ?
(b) Consider three functions $f_{1}(x)=x-1, f_{2}(x)=x$, and $f_{3}(x)=1 / x$. They are vectors in V. Show that f_{1}, f_{2}, f_{3} are linearly independent.

