Homework 2

Answer Key

1. Let U, V be subspaces of a vector space W.
(a) The subspace sum of U and V is $U+V=\{\mathbf{u}+\mathbf{v} \mid \mathbf{u} \in U ; \mathbf{v} \in V\}$. Show that $U+V$ is a subspace of W.
Solution: We must prove the three subspace axioms:

- V contains 0: Since U and V are subspaces, they both contain 0 , so

$$
0=0+0 \in U+V .
$$

- V is closed under addition: Let $\mathbf{u}_{1}+\mathbf{v}_{1}$ and $\mathbf{u}_{2}+\mathbf{v}_{2}$ be arbitrary elements of $U+V$ where $\mathbf{u}_{1}, \mathbf{u}_{2} \in U$ and $\mathbf{v}_{1}, \mathbf{v}_{2} \in V$. Then

$$
\left(\mathbf{u}_{1}+\mathbf{v}_{1}\right)+\left(\mathbf{u}_{2}+\mathbf{v}_{2}\right)=\left(\mathbf{u}_{1}+\mathbf{u}_{2}\right)+\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right) \in U+V .
$$

- V is closed under scalar multiplication: Let $\mathbf{u}+\mathbf{v}$ be an arbitrary element of $U+V$ where $\mathbf{u} \in U$ and $\mathbf{v} \in V$, and let λ be an arbitrary scalar. Then

$$
\lambda(\mathbf{u}+\mathbf{v})=\lambda \mathbf{u}+\lambda \mathbf{v} \in U+V
$$

(b) Let $\mathbf{x} \in W$, but $\mathbf{x} \notin V$. Show that for all $\mathbf{v} \in V, \mathbf{v}+\mathbf{x} \notin V$.

Solution: We will use proof by contradiction. Suppose that there exists $\mathbf{v} \in V$ such that $\mathbf{v}+\mathbf{x} \in V$. Then

$$
\mathbf{x}=-\mathbf{v}+(\mathbf{v}+\mathbf{x}) \in V
$$

but this contradicts our assumption that $\mathbf{x} \notin V$.
(c) Show that the union $U \cup V$ is a subspace if and only if $U \subseteq V$ or $V \subseteq U$.

Solution: This is an if and only if statement, so we must prove the implication in two directions.
(i) (\Leftarrow) Assume $U \subseteq V$. Then $U \cup V=V$ which was assumed to be a subspace of W. Similarly, if $V \subseteq U$, then $U \cup V=U$ is a subspace of W by assumption.
(ii) (\Rightarrow) Assume $U \cup V$ is a subspace. For this direction we will use a proof by contradiction. Suppose that $U \nsubseteq V$ and $V \nsubseteq U$. Then there exists $\mathbf{u} \in U$ and $\mathbf{v} \in V$ such that $\mathbf{u} \notin V$ and $\mathbf{v} \notin U$. By problem 1 (b) we have that

$$
\mathbf{u}+\mathbf{v} \notin U \quad \text { and } \quad \mathbf{u}+\mathbf{v} \notin V,
$$

so $\mathbf{u}+\mathbf{v} \notin U \cup V$. This contradicts the assumption that $U \cup V$ is a subspace (since subspaces are closed under addition).
(d) The subspace sum $U+V$ is a direct sum (denoted $U \oplus V$) if each element in $U+V$ can be written in only one way as a sum $\mathbf{u}+\mathbf{v}$ where $\mathbf{u} \in U, \mathbf{v} \in V$. Show that $U+V$ is a direct sum if and only if $U \cap V=\{0\}$.
Solution: Again, this is an if and only if statement, so we must prove the implication in two directions.
(i) (\Leftarrow) Assume $U \cap V=\{0\}$ and let $\mathbf{u}_{1}+\mathbf{v}_{1}$ and $\mathbf{u}_{2}+\mathbf{v}_{2}$ be arbitrary elements of $U+V$ where $\mathbf{u}_{1}, \mathbf{u}_{2} \in U$ and $\mathbf{v}_{1}, \mathbf{v}_{2} \in V$. We want to show that if $\mathbf{u}_{1}+\mathbf{v}_{1}$ and $\mathbf{u}_{2}+\mathbf{v}_{2}$ represent the same element of $U+W$ then $\mathbf{u}_{1}=\mathbf{u}_{2}$ and $\mathbf{v}_{1}=\mathbf{v}_{2}$.
Suppose that

$$
\mathbf{u}_{1}+\mathbf{v}_{1}=\mathbf{u}_{2}+\mathbf{v}_{2}
$$

Rearranging this equation gives

$$
\mathbf{u}_{1}-\mathbf{u}_{2}=\mathbf{v}_{2}-\mathbf{v}_{1}
$$

Since $\mathbf{u}_{1}-\mathbf{u}_{2} \in U$ and $\mathbf{v}_{2}-\mathbf{v}_{1} \in V$, both sides of this equation must be in $U \cap V=\{0\}$. Then

$$
\begin{aligned}
& \mathbf{u}_{1}-\mathbf{u}_{2}=0 \\
& \mathbf{v}_{2}-\mathbf{v}_{1}=0
\end{aligned}
$$

so $\mathbf{u}_{1}=\mathbf{u}_{2}$ and $\mathbf{v}_{1}=\mathbf{v}_{2}$ as desired.
(ii) (\Rightarrow) Assume each element of $U+V$ can be written in only one way as a sum $\mathbf{u}+\mathbf{v}$ where $\mathbf{u} \in U$ and $\mathbf{v} \in V$. We will use proof by contradiction for this direction. Suppose that $U \cap V \neq\{0\}$, so there exists a nonzero $\mathbf{w} \in U \cap V$. Then there is more than one way to write $0 \in U+V$ as $\mathbf{u}+\mathbf{v}$. For example, we could let

$$
\mathbf{u}=\mathbf{v}=0
$$

or we could let

$$
\mathbf{u}=\mathbf{w} \text { and } \mathbf{v}=-\mathbf{w}
$$

This contradicts our assumption that each element of $U+V$ can be written in only one way as a sum $\mathbf{u}+\mathbf{v}$ where $\mathbf{u} \in U$ and $\mathbf{v} \in V$.
2. Show that $1,1+x, 1+x+x^{2}, 1+x+x^{2}+x^{3}$ forms a basis of $\mathbb{P}_{3}(\mathbb{F})$ (polynomials over the field \mathbb{F} of degree at most 3).
Solution: Let

$$
B=\left\{1,1+x, 1+x+x^{2}, 1+x+x^{2}+x^{3}\right\} .
$$

To show that B is a basis for $\mathbb{P}_{3}(\mathbb{F})$ we need to show that it spans $\mathbb{P}_{3}(\mathbb{F})$ and is linearly independent.
Notice that

$$
\begin{aligned}
1 & =1, \\
x & =(1+x)-(1), \\
x^{2} & =\left(1+x+x^{2}\right)-(1+x), \\
x^{3} & =\left(1+x+x^{2}+x^{3}\right)-\left(1+x+x^{2}\right),
\end{aligned}
$$

so $1, x, x^{2}, x^{3} \in \operatorname{span}(B)$. Since $\left\{1, x, x^{2}, x^{3}\right\}$ is a basis for $\mathbb{P}_{3}(\mathbb{F})$ it spans all of $\mathbb{P}_{3}(\mathbb{F})$, so we must also have that B also spans all of $\mathbb{P}_{3}(\mathbb{F})$.
To see that B is linearly independent, notice that B is a set of four vectors that spans the 4-dimensional space $\mathbb{P}_{3}(\mathbb{F})$. Therefore B is a basis for $\mathbb{P}_{3}(\mathbb{F})$, so B is linearly independent.
The fact that a set of n vectors spanning an n-dimensional space is a basis was covered on recitation worksheet 3 and is also covered in the book Linear Algebra Done Right.
3. Let U, V be vector spaces and $T: U \rightarrow V$ be a linear transformation.
(a) Show that if $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in U$ and if $T \mathbf{v}_{1}, T \mathbf{v}_{2}, \ldots, T \mathbf{v}_{k}$ are linearly independent then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent.
Solution: Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in U$ and that $T \mathbf{v}_{1}, T \mathbf{v}_{2}, \ldots, T \mathbf{v}_{k}$ are linearly independent. Set a linear combination of the \mathbf{v}_{i} equal to zero:

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{k} \mathbf{v}_{k}=0 \quad \text { for scalars } c_{1}, c_{2}, \ldots, c_{k}
$$

We want to show that $c_{i}=0$ for all $i=1, \ldots, k$. Apply the transformation T to both sides of the equation and use linearity:

$$
\begin{aligned}
T\left(c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{k} \mathbf{v}_{k}\right) & =T(0) \\
& \downarrow \\
c_{1} T \mathbf{v}_{1}+c_{2} T \mathbf{v}_{2}+\cdots+c_{k} T \mathbf{v}_{k} & =0
\end{aligned}
$$

Since $T \mathbf{v}_{1}, T \mathbf{v}_{2}, \ldots, T \mathbf{v}_{k}$ are linearly independent, we must have that $c_{i}=0$ for all $i=1, \ldots, k$.
(b) T is injective if for every $\mathbf{u}, \mathbf{v} \in U, T \mathbf{u}=T \mathbf{v}$ implies $\mathbf{u}=\mathbf{v}$. An injective linear transformation is called a monomorphism. Show that T is a monomorphism if and only if the null space (aka kernel) of T is $\{0\}$.
Solution: we must prove the implication in both directions.
(i) (\Rightarrow) Assume T is a monomorphism. Let $\mathbf{u} \in \operatorname{null}(T)$. Then by the definition of the null space, $T(\mathbf{u})=0$. Therefore

$$
T \mathbf{u}=0=T(0)
$$

Since T is a monomorphism (i.e., is injective) we must have $\mathbf{u}=0$, so null $(T)=\{0\}$.
(ii) (\Leftarrow) Assume $\operatorname{null}(T)=\{0\}$. Let $\mathbf{u}, \mathbf{v} \in U$ such that $T \mathbf{u}=T \mathbf{v}$. Then

$$
\begin{aligned}
T(\mathbf{u}-\mathbf{v}) & =T \mathbf{u}-T \mathbf{v} \\
& =0
\end{aligned}
$$

so $\mathbf{u}-\mathbf{v} \in \operatorname{null}(T)$. Since $\operatorname{null}(T)=\{0\}$, we have $\mathbf{u}-\mathbf{v}=0$, so $\mathbf{u}=\mathbf{v}$ as desired.
(c) Show that if T is a monomorphism and $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in U$ are linearly independent then $T \mathbf{v}_{1}, T \mathbf{v}_{2}, \ldots, T \mathbf{v}_{k}$ are linearly independent.
Solution: Assume T is a monomorphism and suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in U$ are linearly independent. Set a linear combination of the $T \mathbf{v}_{i}$ equal to zero:

$$
c_{1} T \mathbf{v}_{1}+c_{2} T \mathbf{v}_{2}+\cdots+c_{k} T \mathbf{v}_{k}=0 \quad \text { for scalars } c_{1}, c_{2}, \ldots, c_{k}
$$

We want to show that $c_{i}=0$ for all $i=1, \ldots, k$. Using linearity, we can rewrite the above equation as

$$
T\left(c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{k} \mathbf{v}_{k}\right)=T(0)
$$

Since T is injective, we have

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{k} \mathbf{v}_{k}=0
$$

Finally, since $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are linearly independent we have $c_{i}=0$ for all $i=1, \ldots, k$.
4. Let V be a vector space over a field \mathbb{F} and $T \in \mathcal{L}(V, \mathbb{F})$. Suppose $\mathbf{v} \in V$ is not $\operatorname{in} \operatorname{ker}(T)$. Show that $V=\operatorname{ker}(T) \oplus\{c \mathbf{v} \mid c \in \mathbb{F}\}$.
Solution: Since $\operatorname{ker}(T)$ and $\{c \mathbf{v} \mid c \in \mathbb{F}\}$ are subsets of V, their sum is also a subset of V. We now want to show that $V \subseteq \operatorname{ker}(T)+\{c \mathbf{v} \mid c \in \mathbb{F}\}$.
Let \mathbf{u} be an arbitrary element of V, and consider the vector

$$
\mathbf{w}=\mathbf{u}-\frac{T \mathbf{u}}{T \mathbf{v}} \mathbf{v} \in V
$$

(note that $T \mathbf{v} \neq 0$ since $\mathbf{v} \notin \operatorname{ker}(T)$). If we apply T to \mathbf{w} we get

$$
\begin{aligned}
T \mathbf{w} & =T\left(\mathbf{u}-\frac{T \mathbf{u}}{T \mathbf{v}} \mathbf{v}\right) \\
& =T \mathbf{u}-\frac{T \mathbf{u}}{T \mathbf{v}} T \mathbf{v} \\
& =T \mathbf{u}-T \mathbf{u} \\
& =0,
\end{aligned}
$$

so $\mathbf{w} \in \operatorname{ker}(T)$. Therefore

$$
\mathbf{u}=\mathbf{w}-\frac{T \mathbf{u}}{T \mathbf{v}} \mathbf{v} \in \operatorname{ker}(T)+\{c \mathbf{v} \mid c \in \mathbb{F}\}
$$

so $V \subseteq \operatorname{ker}(T)+\{c \mathbf{v} \mid c \in \mathbb{F}\}$ and hence $V=\operatorname{ker}(T)+\{c \mathbf{v} \mid c \in \mathbb{F}\}$.
We now want to show that this sum is direct. Let $\mathbf{u} \in \operatorname{ker}(T) \cap\{c \mathbf{v} \mid c \in \mathbb{F}\}$. Since $\mathbf{u} \in\{c \mathbf{v} \mid c \in \mathbb{F}\}$ we can write

$$
\mathbf{u}=\lambda \mathbf{v} \quad \text { for some } \lambda \in \mathbb{F} .
$$

Since $\mathbf{u} \in \operatorname{ker}(T)$ we have

$$
\begin{aligned}
0 & =T \mathbf{u} \\
& =T(\lambda \mathbf{v}) \\
& =\lambda T \mathbf{v} .
\end{aligned}
$$

\mathbf{v} was assumed to not be in $\operatorname{ker}(T)$, so $T(\mathbf{v}) \neq 0$. Thus we can divide both sides by $T \mathbf{v}$ to get $\lambda=0$. Therefore

$$
\mathbf{u}=0 \mathbf{v}=0
$$

so $\operatorname{ker}(T) \cap\{c \mathbf{v} \mid c \in \mathbb{F}\}=\{0\}$. By problem $1(\mathrm{~d})$ the subspace sum is direct, and we can write

$$
V=\operatorname{ker}(T) \oplus\{c \mathbf{v} \mid c \in \mathbb{F}\} .
$$

