
Homework 2
Answer Key

1. Let U, V be subspaces of a vector space W .

(a) The subspace sum of U and V is U + V = {u + v | u ∈ U ;v ∈ V }. Show that U + V is
a subspace of W .

Solution: We must prove the three subspace axioms:

• V contains 0: Since U and V are subspaces, they both contain 0, so

0 = 0 + 0 ∈ U + V.

• V is closed under addition: Let u1 + v1 and u2 + v2 be arbitrary elements of
U + V where u1,u2 ∈ U and v1,v2 ∈ V . Then

(u1 + v1) + (u2 + v2) = (u1 + u2) + (v1 + v2) ∈ U + V.

• V is closed under scalar multiplication: Let u + v be an arbitrary element of
U + V where u ∈ U and v ∈ V , and let λ be an arbitrary scalar. Then

λ(u + v) = λu + λv ∈ U + V

(b) Let x ∈W , but x 6∈ V . Show that for all v ∈ V , v + x 6∈ V .

Solution: We will use proof by contradiction. Suppose that there exists v ∈ V such
that v + x ∈ V . Then

x = −v + (v + x) ∈ V,

but this contradicts our assumption that x 6∈ V .

(c) Show that the union U ∪ V is a subspace if and only if U ⊆ V or V ⊆ U .

Solution: This is an if and only if statement, so we must prove the implication in two
directions.

(i) (⇐) Assume U ⊆ V . Then U ∪ V = V which was assumed to be a subspace of W .
Similarly, if V ⊆ U , then U ∪ V = U is a subspace of W by assumption.

(ii) (⇒) Assume U ∪ V is a subspace. For this direction we will use a proof by contra-
diction. Suppose that U 6⊆ V and V 6⊆ U . Then there exists u ∈ U and v ∈ V such
that u 6∈ V and v 6∈ U . By problem 1(b) we have that

u + v 6∈ U and u + v 6∈ V,

so u + v 6∈ U ∪ V . This contradicts the assumption that U ∪ V is a subspace (since
subspaces are closed under addition).
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(d) The subspace sum U +V is a direct sum (denoted U ⊕V ) if each element in U +V can
be written in only one way as a sum u + v where u ∈ U, v ∈ V . Show that U + V is a
direct sum if and only if U ∩ V = {0}.
Solution: Again, this is an if and only if statement, so we must prove the implication
in two directions.

(i) (⇐) Assume U ∩V = {0} and let u1+v1 and u2+v2 be arbitrary elements of U+V
where u1,u2 ∈ U and v1,v2 ∈ V . We want to show that if u1 + v1 and u2 + v2

represent the same element of U +W then u1 = u2 and v1 = v2.
Suppose that

u1 + v1 = u2 + v2.

Rearranging this equation gives

u1 − u2 = v2 − v1.

Since u1−u2 ∈ U and v2−v1 ∈ V , both sides of this equation must be in U∩V = {0}.
Then

u1 − u2 = 0,

v2 − v1 = 0,

so u1 = u2 and v1 = v2 as desired.

(ii) (⇒) Assume each element of U + V can be written in only one way as a sum u + v
where u ∈ U and v ∈ V . We will use proof by contradiction for this direction.
Suppose that U ∩V 6= {0}, so there exists a nonzero w ∈ U ∩V . Then there is more
than one way to write 0 ∈ U + V as u + v. For example, we could let

u = v = 0,

or we could let
u = w and v = −w.

This contradicts our assumption that each element of U + V can be written in only
one way as a sum u + v where u ∈ U and v ∈ V .
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2. Show that 1, 1 + x, 1 + x+ x2, 1 + x+ x2 + x3 forms a basis of P3(F) (polynomials over the
field F of degree at most 3).

Solution: Let
B = {1, 1 + x, 1 + x+ x2, 1 + x+ x2 + x3}.

To show that B is a basis for P3(F) we need to show that it spans P3(F) and is linearly
independent.

Notice that
1 = 1,

x = (1 + x)− (1),

x2 = (1 + x+ x2)− (1 + x),

x3 = (1 + x+ x2 + x3)− (1 + x+ x2),

so 1, x, x2, x3 ∈ span(B). Since {1, x, x2, x3} is a basis for P3(F) it spans all of P3(F), so we
must also have that B also spans all of P3(F).

To see that B is linearly independent, notice that B is a set of four vectors that spans the
4-dimensional space P3(F). Therefore B is a basis for P3(F), so B is linearly independent.

The fact that a set of n vectors spanning an n-dimensional space is a basis was covered on
recitation worksheet 3 and is also covered in the book Linear Algebra Done Right.
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3. Let U, V be vector spaces and T : U → V be a linear transformation.

(a) Show that if v1,v2, . . . ,vk ∈ U and if Tv1, Tv2, . . . , Tvk are linearly independent then
v1,v2, . . . ,vk are linearly independent.

Solution: Suppose v1,v2, . . . ,vk ∈ U and that Tv1, Tv2, . . . , Tvk are linearly indepen-
dent. Set a linear combination of the vi equal to zero:

c1v1 + c2v2 + · · ·+ ckvk = 0 for scalars c1, c2, . . . , ck.

We want to show that ci = 0 for all i = 1, . . . , k. Apply the transformation T to both
sides of the equation and use linearity:

T (c1v1 + c2v2 + · · ·+ ckvk) = T (0)

↓
c1Tv1 + c2Tv2 + · · ·+ ckTvk = 0

Since Tv1, Tv2, . . . , Tvk are linearly independent, we must have that ci = 0 for all
i = 1, . . . , k.

(b) T is injective if for every u,v ∈ U , Tu = Tv implies u = v. An injective linear
transformation is called a monomorphism. Show that T is a monomorphism if and only
if the null space (aka kernel) of T is {0}.
Solution: we must prove the implication in both directions.

(i) (⇒) Assume T is a monomorphism. Let u ∈ null(T ). Then by the definition of the
null space, T (u) = 0. Therefore

Tu = 0 = T (0).

Since T is a monomorphism (i.e., is injective) we must have u = 0, so null(T ) = {0}.
(ii) (⇐) Assume null(T ) = {0}. Let u,v ∈ U such that Tu = Tv. Then

T (u− v) = Tu− Tv
= 0,

so u− v ∈ null(T ). Since null(T ) = {0}, we have u− v = 0, so u = v as desired.

(c) Show that if T is a monomorphism and v1,v2, . . . ,vk ∈ U are linearly independent then
Tv1, Tv2, . . . , Tvk are linearly independent.

Solution: Assume T is a monomorphism and suppose v1,v2, . . . ,vk ∈ U are linearly
independent. Set a linear combination of the Tvi equal to zero:

c1Tv1 + c2Tv2 + · · ·+ ckTvk = 0 for scalars c1, c2, . . . , ck.

We want to show that ci = 0 for all i = 1, . . . , k. Using linearity, we can rewrite the
above equation as

T (c1v1 + c2v2 + · · ·+ ckvk) = T (0).

Since T is injective, we have

c1v1 + c2v2 + · · ·+ ckvk = 0.

Finally, since v1, . . . ,vk are linearly independent we have ci = 0 for all i = 1, . . . , k.
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4. Let V be a vector space over a field F and T ∈ L(V,F). Suppose v ∈ V is not in ker(T ).
Show that V = ker(T )⊕ {cv | c ∈ F}.
Solution: Since ker(T ) and {cv | c ∈ F} are subsets of V , their sum is also a subset of V .
We now want to show that V ⊆ ker(T ) + {cv | c ∈ F}.
Let u be an arbitrary element of V , and consider the vector

w = u− Tu

Tv
v ∈ V

(note that Tv 6= 0 since v 6∈ ker(T )). If we apply T to w we get

Tw = T

(
u− Tu

Tv
v

)
= Tu− Tu

Tv
Tv

= Tu− Tu
= 0,

so w ∈ ker(T ). Therefore

u = w − Tu

Tv
v ∈ ker(T ) + {cv | c ∈ F},

so V ⊆ ker(T ) + {cv | c ∈ F} and hence V = ker(T ) + {cv | c ∈ F}.
We now want to show that this sum is direct. Let u ∈ ker(T ) ∩ {cv | c ∈ F}. Since
u ∈ {cv | c ∈ F} we can write

u = λv for some λ ∈ F.

Since u ∈ ker(T ) we have

0 = Tu

= T (λv)

= λTv.

v was assumed to not be in ker(T ), so T (v) 6= 0. Thus we can divide both sides by Tv to get
λ = 0. Therefore

u = 0v = 0,

so ker(T )∩{cv | c ∈ F} = {0}. By problem 1(d) the subspace sum is direct, and we can write

V = ker(T )⊕ {cv | c ∈ F}.
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