Homework 2

Due 01/27/2020
In the following problems, make sure to write your arguments coherently in full sentences. Start a sentence with words rather than a formula. Use words to transition your ideas, for example "This leads to", "Therefore", "We want to show", etc.

1. Let U and V be subspaces of a vector space W.
(a) The sum of U and V, denoted by $U+V$, is defined as the set $U+V=\{u+v: u \in$ $U, v \in V\}$. Show that $U+V$ is a subspace of W.
(b) Let w be a vector in W but not in V. Show that

$$
w+v \notin V \quad \forall v \in V .
$$

Hint: proof by contradiction. (Suppose that the conclusion is false. Then use valid arguments to find a contradiction.)
(c) Show that the union $U \cup V$ is a subspace of W if and only if either $U \subset V$ or $V \subset U$. Hint: proof by contradiction.
(d) The sum $U+V$ is said to be a direct sum if each vector in $U+V$ can be written in only one way as $u+v$ where $u \in U$ and $v \in V$. ("Only one way" means that if $x \in U+V$ and $x=u_{1}+v_{1}=u_{2}+v_{2}$ for some $u_{1}, u_{2} \in U$ and $v_{1}, v_{2} \in V$ then $u_{1}=u_{2}$ and $v_{1}=v_{2}$.) Show that $U+V$ is a direct sum if and only if $U \cap V=\{0\}$.
2. Let F be a field of numbers $(\mathbb{Q}, \mathbb{R}$ or $\mathbb{C})$. Show that the polynomials $1,1+x, 1+x+x^{2}$, $1+x+x^{2}+x^{3}$ form a basis of $P_{3}(F)$ (the space of all polynomials of degree ≤ 3 with coefficients in F).
3. Let U and V be vector spaces over a field F. Let $f: U \rightarrow V$ be a linear map.
(a) Let $u_{1}, u_{2}, \ldots u_{k} \in U$. Show that if $f\left(u_{1}\right), f\left(u_{2}\right), \ldots, f\left(u_{k}\right)$ are linearly independent then $u_{1}, u_{2}, \ldots, u_{k}$ are also linearly independent.
(b) f is said to be injective, or monomorphic, if $f(u)=f(v)$ implies $u=v$. Show that f is monomorphic if and only if $\operatorname{null}(f)=\{0\}$.
(c) Suppose f is monomorphic. Show that f preserves linear independence. That is to show: if $u_{1}, u_{2}, \ldots, u_{k} \in U$ are linearly independent then $f\left(u_{1}\right), f\left(u_{2}\right), \ldots, f\left(u_{k}\right)$ are also linearly independent.

Do the following problem for 6 bonus points.
4. Let V be a vector space over F and $f: V \rightarrow F$ be a linear map. Let v be a vector in V but not in $\operatorname{null}(f)$. Show that $V=\operatorname{null}(f)+\operatorname{span}\{v\}$. Is this sum a direct sum?

