Homework 3
Answer Key

1. Let G: PA(R) — P3(R) be given by G(f)(z) = (z + 1) f'(z) — 2f(x).

(a) Show that G is a linear map.
Solution: We must show the two properties of a linear map:

e Additivity: Let u,v € Py(R). Then

Gu+v)(z) = (x + 1) (u(z) +v(z)) — 2(u(x) + v(z))
= (z+ 1)/ (z) + V() — 2u(x) — 2v(x))
= [(x + 1)/ (z) — 2u(x)] + [(x + 1) (x) — 21)(30)]
)

e Homogeneity: Let f € P,(R) and A € R. Then

GAf)(2) = (z+ D(Af(2) = 2(Af(2))
= (z+ )Af'(z) — 2\ f(x)
=A(z+1)f'(z) - 2f ()]
= AG(f)(x)

(b) Find a basis for ker(G) (a.k.a null(G)). What is the dimension of ker(G)?
Solution: Let f € ker(G). Since f € P»(R) we can write

f(z)=az®+br+c for some a,b,c € R.
Now since f is in ker(G) we have G(f)(z) =0, so

0=G(f)(x)
= G(ax® 4 bx +c)
= (24 1)(2az + b) — 2(az® + bz + ¢)
= (2a —b)x + (b — 2¢).

Since x and 1 are linearly independent, the only way to get 0 = (2a — b)x + (b—2¢)1 is if
20 —b=0 and b—2c=0.
Therefore 2a = b = 2¢, so f(x) can be written as

f(z) = az® + 2az + a
=a(z? 4+ 2z +1).

Since f(x) was an arbitrary element of ker(G), we can write every element of ker(G) as
a(z? + 2z + 1) for some a € R. That is,

ker(G) = {a(z® + 2z + 1) : a € R}
= span({z? + 2z + 1})

Now {22 + 2z + 1} has only one (nonzero) element, so it is linearly independent. It is
therefore a basis for ker(G). The dimension of ker(G) is

nullity(G) = dim(ker(G)) = 1.



(c) Find a basis of G(P»(R)) (the range of G). What is the rank of G7
Solution: The range of G is the set of all outputs of the map G. That is

range(G) = {G(f(z)) : f(z) € P2(R)}.
If f(x) € P2(R) we can write
f(z) = az® + bz +c, for some a, b, c € R,
SO

range(G) = {G(az® + bz + ¢) : a,b,c € R}
={(2a —b)x+ (b—2¢) : a,b,c € R}.
Since (2a — b)x + (b — 2c¢) is a first-degree polynomial, it must be contained in the span

of {z,1}. That is,
range(G) C span({z, 1})

Now notice that letting a = b =c =1 gives
(2a —b)x + (b —2c) =z,
so x € range(G). Similarly, letting a = 1, b =2, and ¢ = % gives
(2a —b)x + (b —2¢) =1,
so 1 € range(G). Therefore span({z,1}) C range(G), so
range(G) = span({z, 1}).
Since {x, 1} is linearly independent, it is a basis for range(G). The rank of G is

rank(G) = dim(range(G)) = 2.

(d) Is G a monomorphism, epimorphism (an onto linear map), and/or an isomorphism?
Solution:
e We showed in homework 2 that G is a monomorphism if and only if ker(G) = {0}.
Since this is not true by part (b) above, G is not a monomorphism.

e To be an epimorphism we would need the range of GG to be equal to the codomain.
That is, we would need range(G) = P»(R). Since this is not true by part (c) above,
G is not an epimorphism.

e To be an isomorphism, G needs to be both a monomorphism and an epimorphism.
Since it is neither a monomorphism nor an epimorphism, G is not an isomorphism.



2. Let V:{[CCL 2} €M2X2((C):a—|—b+c+id:0} and let H: V — P»(C) be given by

H(E ﬂ)z*a+®f+®+@z+@+dxwmmsnmm,

(a) Show that V is a subspace of May2(C).
Solution: A valid way to solve this problem is to prove the three subspace axioms:

e 1/ is closed under addition,
e 1/ is closed under scalar multiplication,
e I/ contains the zero vector.

However, I am going to use a different argument. I will show that V' is the span of a set
of vectors. The span of any set of vectors is always a vector space.

Let A be an arbitrary element of V', so

A:[alﬂ, a,b,c,d € C
c d

with
a+b+c+1id=0.

From this condition we can solve for a:
a=—b—c—1d,

so we can write A as

A [—b—c—zd b

) J, bc,d € C

Since A was an arbitrary element of V', we can rewrite V as

—b—c—1id b -1 1 -1 0 —7 0
(om0 D peaccd [ el Ooals %) beacc)
Notice that
b—l 1 n -1 0 d — 0
0 o "1 o 0 1

is a linear combination of three matrices, so V is the set of all linear combinations of
these three matrices. That is,

v ({3 [0 D)

so V' is a vector space.



(b)

Find a basis of V.
Solution: From our work in part (a) we found that V' = span(B) where

s {[ L)

We now want to show that B is linearly independent. Set a linear combination of the
vectors equal to 0:
-1 1] -1 0 —i 0 0 0
b[o 0_+C[1 o]+d[0 1]_[0 J

[—b—c—id b] [0 O

I c dl 10 0]’

which gives b =0, ¢ = 0, and d = 0. Therefore B is linearly independent, so it is a basis
for V.

Find a matrix representation of H. Clearly identify the bases that you are using.

Then

Solution: For V we will use the basis

-1 1 -1 0| |—% O
s=ql ol [ [0 )
that we found in part (b). For Py(C) we will use the basis By = {22, 2,1}. Recall that

we find the columns of the matrix for H by applying H to the elements of B; and finding
the coordinates with respect to Bs.

H<T; ﬂ):(y—D£+4—Lmz+w+0%:mp?+@nz+mﬂ

so the first column of our matrix is

The other calculations are
-1 0
H( ) OD =(—1)22+ (1)z + (1)1

and

H<;iﬂ>:@ﬂ£+mp+an

so the matrix for H is

0 -1 —i
[Hlppy = |=1 1 0
0 1 1



(d) Find the dimension of ker(H).

Solution: To find the dimension of the kernel, we can row-reduce the matrix found in
part (¢). The number of non-pivot columns will be the dimension of ker(H).

O =1 =11 fREr (detaits omisteay |+ O O
1 (details omitted) 01 0
0 1 1 0 01

Since there are no non-pivot columns in the reduced matrix, we get

nullity(H ) = dim(ker(H)) = 0.

(e) Find the rank of H.

Solution: The rank-nullity theorem tells us

rank(H) + nullity(H) = dim(V)
1
rank(H) +0=3

i}
rank(H) = 3.



3. Let V be the subspace of Max2(R) consisting of all matrices in which the sum of entries on
each row is equal to 0. Let W be the subspace of Max2(R) consisting of all matrices in which
the sum of entries on each column is equal to 0. Find a basis of V + W.

Solution: We first want to find bases for V and W. Notice that we can write V as

o

V:{ “ Z} € Msy2(C):a+b=0, c+d:0}

'S e

Z} € Myx2(C):b=—a, d= c}

—a} ta,c € (C}
—c

1 -1 0 O
a[o O}qtc[l _1:|.CL,C€(C},

m={lo WL A}

Since one matrix in Bj is not a scalar multiple of the other, B; is linearly independent, so it
is a basis for V. By very similar arguments we get the basis

N (ERiRt)

I
— =
o

so V = span(B;) where

for W.

Now consider the set

mom={[ 0 0L R

This is not necessarily a basis for V' 4+ W, but we can use it to find a basis.

Using the standard basis for Myx2(C) we can represent a 2 X 2 matrix by a 4 x 1 column

vector:
a b .
c d

Write each of the matrices in By U By as 4 X 1 column vectors in this way, and let them form
the columns of a matrix; then apply row-reduction:

o o QR

d

1 0 1 0

—1 0 0 1| RREF (details omitted)
0 1 -1 0
0 —1 0 -1

SO O
S O = O
O = O O
O = =

The first three columns of the reduced matrix are pivot columns, while the fourth column is
not a pivot column. Therefore, the first three elements of B; U By form a basis for V + W.

That s, B:{[(l) —OlH(l’ _01H_11 8}}

is a basis for V + W.



4. Let V be a vector space with basis By = {v1,v,...,v7}, and let W be a vector space with
basis By = {w1,wo,...,ws}. Let f: V — W be the linear map determined by

f(v1) = w1 + we — wy + 2we,

f(v2) = 3wy — wy — w3 + w5 — 4w,
f(v3) = 2we + bws — wy + Tws — wg,
f(va) = w1 + w3 — wa + ws,

f(vs) = wo — 4wy + Sws + 3we,
f(ve) = w1 + wa + 2ws + 3wy + Sws,
f(v7) = 2wy — 6wz + 2wy + w5 — wg.

(a) Write the matrix that represents f relative to bases B; and Ba.
Solution: Remember that each f(v;) gives a column of the matrix. The entries in the
matrix are the coefficients of the w; vectors:

1 3 0 1 0 1 2

1 -1 2 0 1 1 0

o -1 5 1 0 2 -6
Usmr=1_4 ¢ 1 1 4 3 2
o 1 7 0 5 5 1

2 4 -1 1 3 0 -1]

(b) Find the rank and nullity of f.
Solution: We can find the rank of f by row-reducing the matrix [f]g, 5,. The rank
will be the number of pivot columns in the reduced matrix. It would be too difficult to
reduce the matrix by hand, so we will use MATLAB:

A=[1 3 0 1 0 1 2 ;

1-1 2 0 1 1 0 ;
0-1 5 1 0 2-6 ;
-1 0-1-1-4 3 2 ;
o1 7 0 5 5 1 ;
2-4-1 1 3 0-11;
rref (A)
You should get
1.0000 0 0 0 0 0 1.2913
0 1.0000 0 0 0 0 0.8434
0 0 1.0000 0 0 0 -0.7987
0 0 0 1.0000 0 0 -2.4803
0 0 0 0 1.0000 0 0.4909
0 0 0 0 0 1.0000 0.6586

Since there are six pivot columns in the reduced matrix, f has rank 6. We can then get
the nullity from the rank-nullity theorem:

rank(f) + nullity(f) = dim(V)
3
6 + nullity(f) =7

l
nullity(f) = 1.



