
Homework 3
Answer Key

1. Let G : P2(R)→ P2(R) be given by G(f)(x) = (x+ 1)f ′(x)− 2f(x).

(a) Show that G is a linear map.

Solution: We must show the two properties of a linear map:

• Additivity: Let u, v ∈ P2(R). Then

G(u+ v)(x) = (x+ 1)(u(x) + v(x))′ − 2(u(x) + v(x))

= (x+ 1)(u′(x) + v′(x))− 2u(x)− 2v(x))

=
[
(x+ 1)u′(x)− 2u(x)

]
+
[
(x+ 1)v′(x)− 2v(x)

]
= G(u)(x) +G(v)(x).

• Homogeneity: Let f ∈ P2(R) and λ ∈ R. Then

G(λf)(x) = (x+ 1)(λf(x))′ − 2(λf(x))

= (x+ 1)λf ′(x)− 2λf(x)

= λ
[
(x+ 1)f ′(x)− 2f(x)

]
= λG(f)(x).

(b) Find a basis for ker(G) (a.k.a null(G)). What is the dimension of ker(G)?

Solution: Let f ∈ ker(G). Since f ∈ P2(R) we can write

f(x) = ax2 + bx+ c for some a, b, c ∈ R.

Now since f is in ker(G) we have G(f)(x) = 0, so

0 = G(f)(x)

= G(ax2 + bx+ c)

= (x+ 1)(2ax+ b)− 2(ax2 + bx+ c)

= (2a− b)x+ (b− 2c).

Since x and 1 are linearly independent, the only way to get 0 = (2a− b)x+ (b−2c)1 is if

2a− b = 0 and b− 2c = 0.

Therefore 2a = b = 2c, so f(x) can be written as

f(x) = ax2 + 2ax+ a

= a(x2 + 2x+ 1).

Since f(x) was an arbitrary element of ker(G), we can write every element of ker(G) as
a(x2 + 2x+ 1) for some a ∈ R. That is,

ker(G) = {a(x2 + 2x+ 1) : a ∈ R}
= span({x2 + 2x+ 1})

Now {x2 + 2x + 1} has only one (nonzero) element, so it is linearly independent. It is
therefore a basis for ker(G). The dimension of ker(G) is

nullity(G) = dim(ker(G)) = 1.
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(c) Find a basis of G(P2(R)) (the range of G). What is the rank of G?

Solution: The range of G is the set of all outputs of the map G. That is

range(G) = {G(f(x)) : f(x) ∈ P2(R)}.

If f(x) ∈ P2(R) we can write

f(x) = ax2 + bx+ c, for some a, b, c ∈ R,

so

range(G) = {G(ax2 + bx+ c) : a, b, c ∈ R}
= {(2a− b)x+ (b− 2c) : a, b, c ∈ R}.

Since (2a− b)x+ (b− 2c) is a first-degree polynomial, it must be contained in the span
of {x, 1}. That is,

range(G) ⊆ span({x, 1})

Now notice that letting a = b = c = 1 gives

(2a− b)x+ (b− 2c) = x,

so x ∈ range(G). Similarly, letting a = 1, b = 2, and c = 1
2 gives

(2a− b)x+ (b− 2c) = 1,

so 1 ∈ range(G). Therefore span({x, 1}) ⊆ range(G), so

range(G) = span({x, 1}).

Since {x, 1} is linearly independent, it is a basis for range(G). The rank of G is

rank(G) = dim(range(G)) = 2.

(d) Is G a monomorphism, epimorphism (an onto linear map), and/or an isomorphism?

Solution:

• We showed in homework 2 that G is a monomorphism if and only if ker(G) = {0}.
Since this is not true by part (b) above, G is not a monomorphism.

• To be an epimorphism we would need the range of G to be equal to the codomain.
That is, we would need range(G) = P2(R). Since this is not true by part (c) above,
G is not an epimorphism.

• To be an isomorphism, G needs to be both a monomorphism and an epimorphism.
Since it is neither a monomorphism nor an epimorphism, G is not an isomorphism.
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2. Let V =

{[
a b
c d

]
∈M2×2(C) : a+ b+ c+ id = 0

}
and let H : V → P2(C) be given by

H

([
a b
c d

])
= (a+ b)z2 + (b+ c)z + (c+ d), which is linear.

(a) Show that V is a subspace of M2×2(C).

Solution: A valid way to solve this problem is to prove the three subspace axioms:

• V is closed under addition,

• V is closed under scalar multiplication,

• V contains the zero vector.

However, I am going to use a different argument. I will show that V is the span of a set
of vectors. The span of any set of vectors is always a vector space.

Let A be an arbitrary element of V , so

A =

[
a b
c d

]
, a, b, c, d ∈ C

with
a+ b+ c+ id = 0.

From this condition we can solve for a:

a = −b− c− id,

so we can write A as

A =

[
−b− c− id b

c d

]
, b, c, d ∈ C

Since A was an arbitrary element of V , we can rewrite V as{[
−b− c− id b

c d

]
: b, c, d ∈ C

}
=

{
b

[
−1 1
0 0

]
+ c

[
−1 0
1 0

]
+ d

[
−i 0
0 1

]
: b, c, d ∈ C

}
Notice that

b

[
−1 1
0 0

]
+ c

[
−1 0
1 0

]
+ d

[
−i 0
0 1

]
is a linear combination of three matrices, so V is the set of all linear combinations of
these three matrices. That is,

V = span

({[
−1 1
0 0

]
,

[
−1 0
1 0

]
,

[
−i 0
0 1

]})
,

so V is a vector space.
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(b) Find a basis of V .

Solution: From our work in part (a) we found that V = span(B) where

B =

{[
−1 1
0 0

]
,

[
−1 0
1 0

]
,

[
−i 0
0 1

]}
.

We now want to show that B is linearly independent. Set a linear combination of the
vectors equal to 0:

b

[
−1 1
0 0

]
+ c

[
−1 0
1 0

]
+ d

[
−i 0
0 1

]
=

[
0 0
0 0

]
Then [

−b− c− id b
c d

]
=

[
0 0
0 0

]
,

which gives b = 0, c = 0, and d = 0. Therefore B is linearly independent, so it is a basis
for V .

(c) Find a matrix representation of H. Clearly identify the bases that you are using.

Solution: For V we will use the basis

B1 =

{[
−1 1
0 0

]
,

[
−1 0
1 0

]
,

[
−i 0
0 1

]}
that we found in part (b). For P2(C) we will use the basis B2 = {z2, z, 1}. Recall that
we find the columns of the matrix for H by applying H to the elements of B1 and finding
the coordinates with respect to B2.

H

([
−1 1
0 0

])
= (1− 1)z2 + (−1, 0)z + (0 + 0) = (0)z2 + (−1)z + (0)1

so the first column of our matrix is[
H

([
−1 1
0 0

])]
B2

=

 0
−1
0

 .
The other calculations are

H

([
−1 0
1 0

])
= (−1)z2 + (1)z + (1)1

and

H

([
−i 0
0 1

])
= (−i)z2 + (0)z + (1)1,

so the matrix for H is

[H]B2,B1 =

 0 −1 −i
−1 1 0

0 1 1

 .
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(d) Find the dimension of ker(H).

Solution: To find the dimension of the kernel, we can row-reduce the matrix found in
part (c). The number of non-pivot columns will be the dimension of ker(H). 0 −1 −i

−1 1 0
0 1 1

 RREF (details omitted)−−−−−−−−−−−−−−→

1 0 0
0 1 0
0 0 1

 .
Since there are no non-pivot columns in the reduced matrix, we get

nullity(H) = dim(ker(H)) = 0.

(e) Find the rank of H.

Solution: The rank-nullity theorem tells us

rank(H) + nullity(H) = dim(V )

↓
rank(H) + 0 = 3

↓
rank(H) = 3.
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3. Let V be the subspace of M2×2(R) consisting of all matrices in which the sum of entries on
each row is equal to 0. Let W be the subspace of M2×2(R) consisting of all matrices in which
the sum of entries on each column is equal to 0. Find a basis of V +W .

Solution: We first want to find bases for V and W . Notice that we can write V as

V =

{[
a b
c d

]
∈M2×2(C) : a+ b = 0, c+ d = 0

}
=

{[
a b
c d

]
∈M2×2(C) : b = −a, d = −c

}
=

{[
a −a
c −c

]
: a, c ∈ C

}
=

{
a

[
1 −1
0 0

]
+ c

[
0 0
1 −1

]
: a, c ∈ C

}
,

so V = span(B1) where

B1 =

{[
1 −1
0 0

]
,

[
0 0
1 −1

]}
.

Since one matrix in B1 is not a scalar multiple of the other, B1 is linearly independent, so it
is a basis for V . By very similar arguments we get the basis

B2 =

{[
1 0
−1 0

]
,

[
0 1
0 −1

]}
for W .

Now consider the set

B1 ∪B2 =

{[
1 −1
0 0

]
,

[
0 0
1 −1

]
,

[
1 0
−1 0

]
,

[
0 1
0 −1

]}
.

This is not necessarily a basis for V +W , but we can use it to find a basis.

Using the standard basis for M2×2(C) we can represent a 2 × 2 matrix by a 4 × 1 column
vector: [

a b
c d

]
→


a
b
c
d


Write each of the matrices in B1 ∪B2 as 4× 1 column vectors in this way, and let them form
the columns of a matrix; then apply row-reduction:

1 0 1 0
−1 0 0 1

0 1 −1 0
0 −1 0 −1

 RREF (details omitted)−−−−−−−−−−−−−−→


1 0 0 −1
0 1 0 1
0 0 1 1
0 0 0 0

 .
The first three columns of the reduced matrix are pivot columns, while the fourth column is
not a pivot column. Therefore, the first three elements of B1 ∪ B2 form a basis for V + W .
That is,

B =

{[
1 −1
0 0

]
,

[
0 0
1 −1

]
,

[
1 0
−1 0

]}
is a basis for V +W .
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4. Let V be a vector space with basis B1 = {v1, v2, . . . , v7}, and let W be a vector space with
basis B2 = {w1, w2, . . . , w6}. Let f : V →W be the linear map determined by

f(v1) = w1 + w2 − w4 + 2w6,

f(v2) = 3w1 − w2 − w3 + w5 − 4w6,

f(v3) = 2w2 + 5w3 − w4 + 7w5 − w6,

f(v4) = w1 + w3 − w4 + w6,

f(v5) = w2 − 4w4 + 5w5 + 3w6,

f(v6) = w1 + w2 + 2w3 + 3w4 + 5w5,

f(v7) = 2w1 − 6w3 + 2w4 + w5 − w6.

(a) Write the matrix that represents f relative to bases B1 and B2.
Solution: Remember that each f(vi) gives a column of the matrix. The entries in the
matrix are the coefficients of the wj vectors:

[f ]B2,B1 =



1 3 0 1 0 1 2
1 −1 2 0 1 1 0
0 −1 5 1 0 2 −6
−1 0 −1 −1 −4 3 2

0 1 7 0 5 5 1
2 −4 −1 1 3 0 −1

 .

(b) Find the rank and nullity of f .

Solution: We can find the rank of f by row-reducing the matrix [f ]B2,B1 . The rank
will be the number of pivot columns in the reduced matrix. It would be too difficult to
reduce the matrix by hand, so we will use MATLAB:

A = [ 1 3 0 1 0 1 2 ;

1 -1 2 0 1 1 0 ;

0 -1 5 1 0 2 -6 ;

-1 0 -1 -1 -4 3 2 ;

0 1 7 0 5 5 1 ;

2 -4 -1 1 3 0 -1 ];

rref(A)

You should get

1.0000 0 0 0 0 0 1.2913

0 1.0000 0 0 0 0 0.8434

0 0 1.0000 0 0 0 -0.7987

0 0 0 1.0000 0 0 -2.4803

0 0 0 0 1.0000 0 0.4909

0 0 0 0 0 1.0000 0.6586

Since there are six pivot columns in the reduced matrix, f has rank 6. We can then get
the nullity from the rank-nullity theorem:

rank(f) + nullity(f) = dim(V )

↓
6 + nullity(f) = 7

↓
nullity(f) = 1.
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