## Homework 3

Answer Key

1. Let $G: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ be given by $G(f)(x)=(x+1) f^{\prime}(x)-2 f(x)$.
(a) Show that $G$ is a linear map.

Solution: We must show the two properties of a linear map:

- Additivity: Let $u, v \in P_{2}(\mathbb{R})$. Then

$$
\begin{aligned}
G(u+v)(x) & =(x+1)(u(x)+v(x))^{\prime}-2(u(x)+v(x)) \\
& \left.=(x+1)\left(u^{\prime}(x)+v^{\prime}(x)\right)-2 u(x)-2 v(x)\right) \\
& =\left[(x+1) u^{\prime}(x)-2 u(x)\right]+\left[(x+1) v^{\prime}(x)-2 v(x)\right] \\
& =G(u)(x)+G(v)(x)
\end{aligned}
$$

- Homogeneity: Let $f \in P_{2}(\mathbb{R})$ and $\lambda \in \mathbb{R}$. Then

$$
\begin{aligned}
G(\lambda f)(x) & =(x+1)(\lambda f(x))^{\prime}-2(\lambda f(x)) \\
& =(x+1) \lambda f^{\prime}(x)-2 \lambda f(x) \\
& =\lambda\left[(x+1) f^{\prime}(x)-2 f(x)\right] \\
& =\lambda G(f)(x)
\end{aligned}
$$

(b) Find a basis for $\operatorname{ker}(G)$ (a.k.a null $(G)$ ). What is the dimension of $\operatorname{ker}(G)$ ?

Solution: Let $f \in \operatorname{ker}(G)$. Since $f \in P_{2}(\mathbb{R})$ we can write

$$
f(x)=a x^{2}+b x+c \quad \text { for some } a, b, c \in \mathbb{R}
$$

Now since $f$ is in $\operatorname{ker}(G)$ we have $G(f)(x)=0$, so

$$
\begin{aligned}
0 & =G(f)(x) \\
& =G\left(a x^{2}+b x+c\right) \\
& =(x+1)(2 a x+b)-2\left(a x^{2}+b x+c\right) \\
& =(2 a-b) x+(b-2 c)
\end{aligned}
$$

Since $x$ and 1 are linearly independent, the only way to get $0=(2 a-b) x+(b-2 c) 1$ is if

$$
2 a-b=0 \quad \text { and } \quad b-2 c=0
$$

Therefore $2 a=b=2 c$, so $f(x)$ can be written as

$$
\begin{aligned}
f(x) & =a x^{2}+2 a x+a \\
& =a\left(x^{2}+2 x+1\right)
\end{aligned}
$$

Since $f(x)$ was an arbitrary element of $\operatorname{ker}(G)$, we can write every element of $\operatorname{ker}(G)$ as $a\left(x^{2}+2 x+1\right)$ for some $a \in \mathbb{R}$. That is,

$$
\begin{aligned}
\operatorname{ker}(G) & =\left\{a\left(x^{2}+2 x+1\right): a \in \mathbb{R}\right\} \\
& =\operatorname{span}\left(\left\{x^{2}+2 x+1\right\}\right)
\end{aligned}
$$

Now $\left\{x^{2}+2 x+1\right\}$ has only one (nonzero) element, so it is linearly independent. It is therefore a basis for $\operatorname{ker}(G)$. The dimension of $\operatorname{ker}(G)$ is

$$
\operatorname{nullity}(G)=\operatorname{dim}(\operatorname{ker}(G))=1
$$

(c) Find a basis of $G\left(P_{2}(\mathbb{R})\right.$ ) (the range of $G$ ). What is the rank of $G$ ?

Solution: The range of $G$ is the set of all outputs of the map $G$. That is

$$
\operatorname{range}(G)=\left\{G(f(x)): f(x) \in P_{2}(\mathbb{R})\right\}
$$

If $f(x) \in P_{2}(\mathbb{R})$ we can write

$$
f(x)=a x^{2}+b x+c, \quad \text { for some } a, b, c \in \mathbb{R},
$$

so

$$
\begin{aligned}
\operatorname{range}(G) & =\left\{G\left(a x^{2}+b x+c\right): a, b, c \in \mathbb{R}\right\} \\
& =\{(2 a-b) x+(b-2 c): a, b, c \in \mathbb{R}\} .
\end{aligned}
$$

Since $(2 a-b) x+(b-2 c)$ is a first-degree polynomial, it must be contained in the span of $\{x, 1\}$. That is,

$$
\operatorname{range}(G) \subseteq \operatorname{span}(\{x, 1\})
$$

Now notice that letting $a=b=c=1$ gives

$$
(2 a-b) x+(b-2 c)=x,
$$

so $x \in \operatorname{range}(G)$. Similarly, letting $a=1, b=2$, and $c=\frac{1}{2}$ gives

$$
(2 a-b) x+(b-2 c)=1,
$$

so $1 \in \operatorname{range}(G)$. Therefore $\operatorname{span}(\{x, 1\}) \subseteq \operatorname{range}(G)$, so

$$
\operatorname{range}(G)=\operatorname{span}(\{x, 1\})
$$

Since $\{x, 1\}$ is linearly independent, it is a basis for range $(G)$. The rank of $G$ is

$$
\operatorname{rank}(G)=\operatorname{dim}(\operatorname{range}(G))=2
$$

(d) Is $G$ a monomorphism, epimorphism (an onto linear map), and/or an isomorphism?

## Solution:

- We showed in homework 2 that $G$ is a monomorphism if and only if $\operatorname{ker}(G)=\{0\}$. Since this is not true by part (b) above, $G$ is not a monomorphism.
- To be an epimorphism we would need the range of $G$ to be equal to the codomain. That is, we would need range $(G)=P_{2}(\mathbb{R})$. Since this is not true by part (c) above, $G$ is not an epimorphism.
- To be an isomorphism, $G$ needs to be both a monomorphism and an epimorphism. Since it is neither a monomorphism nor an epimorphism, $G$ is not an isomorphism.

2. Let $V=\left\{\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in M_{2 \times 2}(\mathbb{C}): a+b+c+i d=0\right\}$ and let $H: V \rightarrow P_{2}(\mathbb{C})$ be given by

$$
H\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=(a+b) z^{2}+(b+c) z+(c+d), \text { which is linear. }
$$

(a) Show that $V$ is a subspace of $M_{2 \times 2}(\mathbb{C})$.

Solution: A valid way to solve this problem is to prove the three subspace axioms:

- $V$ is closed under addition,
- $V$ is closed under scalar multiplication,
- $V$ contains the zero vector.

However, I am going to use a different argument. I will show that $V$ is the span of a set of vectors. The span of any set of vectors is always a vector space.
Let $A$ be an arbitrary element of $V$, so

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], \quad a, b, c, d \in \mathbb{C}
$$

with

$$
a+b+c+i d=0
$$

From this condition we can solve for $a$ :

$$
a=-b-c-i d,
$$

so we can write $A$ as

$$
A=\left[\begin{array}{cc}
-b-c-i d & b \\
c & d
\end{array}\right], \quad b, c, d \in \mathbb{C}
$$

Since $A$ was an arbitrary element of $V$, we can rewrite $V$ as

$$
\left\{\left[\begin{array}{cc}
-b-c-i d & b \\
c & d
\end{array}\right]: b, c, d \in \mathbb{C}\right\}=\left\{b\left[\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right]+c\left[\begin{array}{cc}
-1 & 0 \\
1 & 0
\end{array}\right]+d\left[\begin{array}{cc}
-i & 0 \\
0 & 1
\end{array}\right]: b, c, d \in \mathbb{C}\right\}
$$

Notice that

$$
b\left[\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right]+c\left[\begin{array}{cc}
-1 & 0 \\
1 & 0
\end{array}\right]+d\left[\begin{array}{cc}
-i & 0 \\
0 & 1
\end{array}\right]
$$

is a linear combination of three matrices, so $V$ is the set of all linear combinations of these three matrices. That is,

$$
V=\operatorname{span}\left(\left\{\left[\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{cc}
-i & 0 \\
0 & 1
\end{array}\right]\right\}\right)
$$

so $V$ is a vector space.
(b) Find a basis of $V$.

Solution: From our work in part (a) we found that $V=\operatorname{span}(B)$ where

$$
B=\left\{\left[\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{cc}
-i & 0 \\
0 & 1
\end{array}\right]\right\}
$$

We now want to show that $B$ is linearly independent. Set a linear combination of the vectors equal to 0 :

$$
b\left[\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right]+c\left[\begin{array}{cc}
-1 & 0 \\
1 & 0
\end{array}\right]+d\left[\begin{array}{cc}
-i & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

Then

$$
\left[\begin{array}{cc}
-b-c-i d & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right],
$$

which gives $b=0, c=0$, and $d=0$. Therefore $B$ is linearly independent, so it is a basis for $V$.
(c) Find a matrix representation of $H$. Clearly identify the bases that you are using.

Solution: For $V$ we will use the basis

$$
B_{1}=\left\{\left[\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{cc}
-i & 0 \\
0 & 1
\end{array}\right]\right\}
$$

that we found in part (b). For $P_{2}(\mathbb{C})$ we will use the basis $B_{2}=\left\{z^{2}, z, 1\right\}$. Recall that we find the columns of the matrix for $H$ by applying $H$ to the elements of $B_{1}$ and finding the coordinates with respect to $B_{2}$.

$$
H\left(\left[\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right]\right)=(1-1) z^{2}+(-1,0) z+(0+0)=(0) z^{2}+(-1) z+(0) 1
$$

so the first column of our matrix is

$$
\left[H\left(\left[\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right]\right)\right]_{B_{2}}=\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right] .
$$

The other calculations are

$$
H\left(\left[\begin{array}{cc}
-1 & 0 \\
1 & 0
\end{array}\right]\right)=(-1) z^{2}+(1) z+(1) 1
$$

and

$$
H\left(\left[\begin{array}{cc}
-i & 0 \\
0 & 1
\end{array}\right]\right)=(-i) z^{2}+(0) z+(1) 1
$$

so the matrix for $H$ is

$$
[H]_{B_{2}, B_{1}}=\left[\begin{array}{rrr}
0 & -1 & -i \\
-1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] .
$$

(d) Find the dimension of $\operatorname{ker}(H)$.

Solution: To find the dimension of the kernel, we can row-reduce the matrix found in part (c). The number of non-pivot columns will be the dimension of $\operatorname{ker}(H)$.

$$
\left[\begin{array}{rrr}
0 & -1 & -i \\
-1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] \xrightarrow{\text { RREF (details omitted) }}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Since there are no non-pivot columns in the reduced matrix, we get

$$
\operatorname{nullity}(H)=\operatorname{dim}(\operatorname{ker}(H))=0
$$

(e) Find the rank of $H$.

Solution: The rank-nullity theorem tells us

$$
\begin{aligned}
\operatorname{rank}(H)+\operatorname{nullity}(H) & =\operatorname{dim}(V) \\
& \downarrow \\
\operatorname{rank}(H)+0 & =3 \\
& \downarrow \\
\operatorname{rank}(H) & =3 .
\end{aligned}
$$

3. Let $V$ be the subspace of $M_{2 \times 2}(\mathbb{R})$ consisting of all matrices in which the sum of entries on each row is equal to 0 . Let $W$ be the subspace of $M_{2 \times 2}(\mathbb{R})$ consisting of all matrices in which the sum of entries on each column is equal to 0 . Find a basis of $V+W$.
Solution: We first want to find bases for $V$ and $W$. Notice that we can write $V$ as

$$
\begin{aligned}
V & =\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in M_{2 \times 2}(\mathbb{C}): a+b=0, c+d=0\right\} \\
& =\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in M_{2 \times 2}(\mathbb{C}): b=-a, d=-c\right\} \\
& =\left\{\left[\begin{array}{ll}
a & -a \\
c & -c
\end{array}\right]: a, c \in \mathbb{C}\right\} \\
& =\left\{a\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right]+c\left[\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right]: a, c \in \mathbb{C}\right\},
\end{aligned}
$$

so $V=\operatorname{span}\left(B_{1}\right)$ where

$$
B_{1}=\left\{\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right]\right\}
$$

Since one matrix in $B_{1}$ is not a scalar multiple of the other, $B_{1}$ is linearly independent, so it is a basis for $V$. By very similar arguments we get the basis

$$
B_{2}=\left\{\left[\begin{array}{cc}
1 & 0 \\
-1 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right]\right\}
$$

for $W$.
Now consider the set

$$
B_{1} \cup B_{2}=\left\{\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
-1 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right]\right\} .
$$

This is not necessarily a basis for $V+W$, but we can use it to find a basis.
Using the standard basis for $M_{2 \times 2}(\mathbb{C})$ we can represent a $2 \times 2$ matrix by a $4 \times 1$ column vector:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \rightarrow \quad\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]
$$

Write each of the matrices in $B_{1} \cup B_{2}$ as $4 \times 1$ column vectors in this way, and let them form the columns of a matrix; then apply row-reduction:

$$
\left[\begin{array}{rrrr}
1 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1 \\
0 & 1 & -1 & 0 \\
0 & -1 & 0 & -1
\end{array}\right] \xrightarrow{\text { RREF (details omitted) }}\left[\begin{array}{rrrr}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

The first three columns of the reduced matrix are pivot columns, while the fourth column is not a pivot column. Therefore, the first three elements of $B_{1} \cup B_{2}$ form a basis for $V+W$. That is,

$$
B=\left\{\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
-1 & 0
\end{array}\right]\right\}
$$

is a basis for $V+W$.
4. Let $V$ be a vector space with basis $\mathcal{B}_{1}=\left\{v_{1}, v_{2}, \ldots, v_{7}\right\}$, and let $W$ be a vector space with basis $\mathcal{B}_{2}=\left\{w_{1}, w_{2}, \ldots, w_{6}\right\}$. Let $f: V \rightarrow W$ be the linear map determined by

$$
\begin{aligned}
& f\left(v_{1}\right)=w_{1}+w_{2}-w_{4}+2 w_{6}, \\
& f\left(v_{2}\right)=3 w_{1}-w_{2}-w_{3}+w_{5}-4 w_{6}, \\
& f\left(v_{3}\right)=2 w_{2}+5 w_{3}-w_{4}+7 w_{5}-w_{6}, \\
& f\left(v_{4}\right)=w_{1}+w_{3}-w_{4}+w_{6}, \\
& f\left(v_{5}\right)=w_{2}-4 w_{4}+5 w_{5}+3 w_{6}, \\
& f\left(v_{6}\right)=w_{1}+w_{2}+2 w_{3}+3 w_{4}+5 w_{5}, \\
& f\left(v_{7}\right)=2 w_{1}-6 w_{3}+2 w_{4}+w_{5}-w_{6} .
\end{aligned}
$$

(a) Write the matrix that represents $f$ relative to bases $\mathcal{B}_{1}$ and $\mathcal{B}_{2}$.

Solution: Remember that each $f\left(v_{i}\right)$ gives a column of the matrix. The entries in the matrix are the coefficients of the $w_{j}$ vectors:

$$
[f]_{\mathcal{R}_{2}, \mathcal{B}_{1}}=\left[\begin{array}{rrrrrrr}
1 & 3 & 0 & 1 & 0 & 1 & 2 \\
1 & -1 & 2 & 0 & 1 & 1 & 0 \\
0 & -1 & 5 & 1 & 0 & 2 & -6 \\
-1 & 0 & -1 & -1 & -4 & 3 & 2 \\
0 & 1 & 7 & 0 & 5 & 5 & 1 \\
2 & -4 & -1 & 1 & 3 & 0 & -1
\end{array}\right] .
$$

(b) Find the rank and nullity of $f$.

Solution: We can find the rank of $f$ by row-reducing the matrix $[f]_{\mathcal{B}_{2}, \mathcal{B}_{1}}$. The rank will be the number of pivot columns in the reduced matrix. It would be too difficult to reduce the matrix by hand, so we will use MATLAB:

```
A = [ llllllllll
        1
    0
    -1
    0
    2 -4 -1 1 1 3 0 0-1 ];
rref(A)
```

You should get

| 1.0000 | 0 | 0 | 0 | 0 | 0 | 1.2913 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 1.0000 | 0 | 0 | 0 | 0 | 0.8434 |
| 0 | 0 | 1.0000 | 0 | 0 | 0 | -0.7987 |
| 0 | 0 | 0 | 1.0000 | 0 | 0 | -2.4803 |
| 0 | 0 | 0 | 0 | 1.0000 | 0 | 0.4909 |
| 0 | 0 | 0 | 0 | 0 | 1.0000 | 0.6586 |

Since there are six pivot columns in the reduced matrix, $f$ has rank 6 . We can then get the nullity from the rank-nullity theorem:

$$
\begin{aligned}
\operatorname{rank}(f)+\operatorname{nullity}(f) & =\operatorname{dim}(V) \\
& \downarrow \\
6+\operatorname{nullity}(f) & =7 \\
& \downarrow \\
\operatorname{nullity}(f) & =1 .
\end{aligned}
$$

