Homework 3

Due 02/03/2020
In the following problems, make sure to write your arguments coherently in full sentences. Start a sentence with words rather than a formula. Use words to transition your ideas, for example "This leads to", "Therefore", "We want to show", etc.

1. Consider a map $G: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ given by $G(u)=(x+1) u^{\prime}-2 u$.
(a) Show that G is a linear map.
(b) Find a basis and the dimension of $\operatorname{null}(G)$. What is the nullity of G ?
(c) Find a basis and the dimension of range (G). What is the rank of G ?
(d) Is G a monomorphism, epimorphism, isomorphism or none of them?
2. Let

$$
V=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in M_{2 \times 2}(\mathbb{C}): \quad a+b+c+i d=0\right\}
$$

Consider a linear map $H: V \rightarrow P_{2}(\mathbb{C})$ given by

$$
H\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=(a+b) z^{2}+(b+c) z+(c+d) .
$$

(a) Show that V is a subspace of $M_{2 \times 2}(\mathbb{C})$.
(b) Find a basis of V.
(c) Find a matrix representation of H.
(d) Find the nullity of H.
(e) Find the rank of H.

Hint: use the rank-nullity theorem
3. Let V be the subspace of $M_{2 \times 2}(\mathbb{R})$ consisting of all matrices in which the sum of entries on each row is equal to 0 . Let W be the subspace of $M_{2 \times 2}(\mathbb{R})$ consisting of all matrices in which the sum of entries on each column is equal to 0 . Find a basis of $V+W$.
Do the following problem for 6 bonus points.
4. Let V be a vector space with basis $B_{1}=\left\{v_{1}, v_{2}, \ldots, v_{7}\right\}$, and W be a vector space with basis $B_{2}=\left\{w_{1}, w_{2}, \ldots, w_{6}\right\}$. Let $f: V \rightarrow W$ be a linear map given by

$$
\begin{aligned}
& f\left(v_{1}\right)=w_{1}+w_{2}-w_{4}+2 w_{6}, \\
& f\left(v_{2}\right)=3 w_{1}-w_{2}-w_{3}+w_{5}-4 w_{6}, \\
& f\left(v_{3}\right)=2 w_{2}+5 w_{3}-w_{4}+7 w_{5}-w_{6}, \\
& f\left(v_{4}\right)=w_{1}+w_{3}-w_{4}+w_{6}, \\
& f\left(v_{5}\right)=w_{2}-4 w_{4}+5 w_{5}+3 w_{6}, \\
& f\left(v_{6}\right)=w_{1}+w_{2}+2 w_{3}+3 w_{4}+5 w_{5}, \\
& f\left(v_{7}\right)=2 w_{1}-6 w_{3}+2 w_{4}+w_{5}-w_{6}
\end{aligned}
$$

(a) Write the matrix that represents f relative to bases B_{1} and B_{2}.
(b) Find the rank and nullity of f. (You are encouraged to use Matlab to do this problem. If you use Matlab, please write down the Matlab commands and the outputs.)

