
Homework 4
Answer Key

1. Consider T : P2 → P2 given by T (f(x)) = x
d

dx
(f(2x+ 1)).

(a) Find [T ]B, the matrix of T with respect to the basis B = {1, x, x2} of P2.

Solution: Calculate [Tv]B for each v ∈ B to find the columns of the matrix:

T (1) = x
d

dx
[1] = x(0) = 0 → [T (1)]B =

0
0
0


T (x) = x

d

dx
[2x+ 1] = x(2) = 2x → [T (x)]B =

0
2
0


T (x2) = x

d

dx
[(2x+ 1)2] = x(8x+ 4) = 4x+ 8x2 → [T (x2)]B =

0
4
8


Thus

[T ]B =

0 0 0
0 2 4
0 0 8

 .

(b) Find the eigenvalues of T .

Solution: Notice that A = [T ]B is a triangular matrix, so the eigenvalues are the
entries on the diagonal: λ = 0, 2, 8. This can also be seen by finding the characteristic
polynomial:

det(A− λI) =

0− λ 0 0
0 2− λ 4
0 0 8− λ

 = −λ(2− λ)(8− λ).

Setting the characteristic polynomial equal to zero gives

−λ(2− λ)(8− λ) = 0 → λ = 0, 2, 8.

(c) For each eigenvalue, find the eigenvectors associated to the eigenvalue (as polynomials
in P2).

Solution: To find the eigenvectors associated to λ, we must find Eλ = null(T − λI).
This means solving the equation

(A− λI)v = 0.

where v = [v1, v2, v3]
T . We then must convert the column vectors v back into polynomi-

als. Note that eigenvectors are nonzero, so the eigenvectors associated to the eigenvalue
λ are all of the nonzero elements of Eλ.
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• First let λ = 0. Then A− λI = A, so we get the augmented system0 0 0 0
0 2 4 0
0 0 8 0

 RREF−−−−→

0 1 0 0
0 0 1 0
0 0 0 0


The reduced matrix tells us that v2 = 0 and v3 = 0, so

v =

v10
0

 = v1

1
0
0

 , v1 ∈ R.

Converting back to polynomials gives

E0 = {a : a ∈ R} = span({1})

(here we used a ∈ R in place of v1 ∈ R).

• Now let λ = 2. The augemnted system is0− 2 0 0 0
0 2− 2 4 0
0 0 8− 2 0

 −→

−2 0 0 0
0 0 4 0
0 0 6 0

 RREF−−−−→

1 0 0 0
0 0 1 0
0 0 0 0

 ,
so v1 = 0 and v3 = 0. Therefore the eigenvalues of A associated to λ = 2 are

v =

 0
v2
0

 = v2

0
1
0

 , v2 ∈ R.

Converting back to polynomials gives

E2 = {bx : b ∈ R} = span({x}).

• Finally let λ = 8. The augemnted system is−8 0 0 0
0 −6 4 0
0 0 0 0

 RREF−−−−→

1 0 0 0
0 1 −2

3 0
0 0 0 0

 ,
so v1 = 0 and v2 − 2

3v3 = 0. Therefore v2 = 2
3v3, so the eigenvalues of A associated

to λ = 8 are

v =

 0
2
3v3
v3

 = v3

0
2
3
1

 , v3 ∈ R.

If we let c ∈ R be such that v3 = 3c, then we can write this as

c

0
2
3

 , c ∈ R.

Converting back to polynomials gives

E8 = {c(2x+ 3x2) : c ∈ R} = span({2x+ 3x2}).
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(d) Find a basis B′ of P2 such that [T ]B′ is a diagonal matrix (if possible).

Solution: T is diagonalizable, because the algebraic multiplicity of each eigenvalue
matches its geometric multiplicity. We get the basis B′ from the bases for the eigenspaces
that we found in part (c):

B′ = {1, x, 2x+ 3x2}.

Then [T ]B′ is the diagonal matrix with entries given by the eigenvalues of T :

[T ]B′ =

0 0 0
0 2 0
0 0 8

 .
Notice that the eigenvalues along the diagonal are in the same order as their associated
eigenvectors in B′.

2. Let V be real vector space and let S and T be linear maps from V to V . Suppose S is
invertible.

(a) Prove λ ∈ R is an eigenvalue of T if and only if λ is an eigenvalue of STS−1.

Solution: This is an if and only if statement, so we need to prove two directions.

• (⇒) Suppose λ ∈ R is an eigenvalue of T . Then there exists some eigenvector v ∈ V
such that

Tv = λv.

Now let w = Sv (note that w is nonzero, since v is nonzero and S is invertible).
Then

STS−1w = STS−1Sv

= STv

= Sλv

= λSv

= λw,

so w is an eigenvector of STS−1 with eigenvalue λ. Therefore λ is an eigenvalue of
STS−1.

• (⇐) Suppose λ ∈ R is an eigenvalue of STS−1. Then there exists some eigenvector
w ∈ V such that

STS−1w = λw.

We can apply S−1 to both sides of this equation to get

S−1STS−1w = S−1λw.

↓
TS−1w = λS−1w.

Therefore v = S−1w is an eigenvector of T with eigenvalue λ (note that v is nonzero,
since w is nonzero and S−1 is invertible).

(b) Give a description of the set of eigenvectors of STS−1 associated to an eigenvalue λ in
terms of the eigenvectors of T associated to λ.

Solution: It can be seen from our work in part (a) that w is an eigenvector of STS−1

if and only if v = S−1w is an eigenvector of T . Therefore, the eigenvectors w of STS−1

can be written as w = Sv. That is, the eigenvectors of STS−1 are the image under S of
the eigenvectors of T .
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3. Two matrices A,B ∈Mn×n(F ) are said to be similar if there is an invertible matrix P such
that A = PBP−1.

(a) Is it true that two matrices that are similar to each other must have the same set of
eigenvalues? Explain your answer.

Solution: Yes. Suppose A and B are similar, so A = PBP−1. Then asking whether A
and B have the same eigenvalues is the same as asking whether PBP−1 and B have the
same eigenvalues. This is true from problem 2(a) (just replace P with S and B with T ).

(b) Is it true that two matrices that have the same set of eigenvalues must be similar to each
other? Explain your answer.

Solution: No. To prove this is false, we need a counterexample. Let A,B ∈M2×2(R)
be given by

A =

[
1 1
0 1

]
, and B = I =

[
1 0
0 1

]
.

Notice that both matrices have only the eigenvalue 1. Now suppose that we could write
A = PBP−1 for some invertible matrix P . Then

A = PBP−1

= PIP−1

= PP−1

= I,

but this is a contradiction since A 6= I. Therefore A cannot be written as PBP−1, so A
and B are not similar, despite having the same eigenvalues.
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4. The trace of a square matrix is defined as the sum of the entries on the diagonal. Let
A,B ∈ Mn×n(F ). Show that trace(AB) = trace(BA). Use this result to show that similar
matrices have the same trace.

Solution: We will need to use the fact that the (i, i) entry of AB is

(AB)i,i =
n∑
k=1

aikbki.

The trace of AB is the sum of the (i, i) entries of AB, so

trace(AB) =

n∑
i=1

n∑
k=1

aikbki.

Likewise, the trace of BA is

trace(BA) =

n∑
i=1

n∑
k=1

bikaki

=

n∑
i=1

n∑
k=1

akibik

=

n∑
k=1

n∑
i=1

akibik.

Notice that this last sum for trace(BA) is the same as the sum for trace(AB) but with the
letters i and k switched. Since i and k are only indices of the sums, we can rename them.
That is, we can change i to k and k to i. We then get

trace(BA) =
n∑
k=1

n∑
i=1

akibik =
n∑
i=1

n∑
k=1

aikbki = trace(AB).

Now we want to show that similar matrices have the same trace. Let A,B ∈ Mn×n(F ) be
similar matrices, so A = PBP−1 for some invertible matrix P . Then

trace(A) = trace(PBP−1)

= trace(P (BP−1))

= trace((BP−1)P )

= trace(BP−1P )

= trace(BI)

= trace(B).
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5. Let

A =


1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16

 .
(a) Find the eigenvalues of A.

Solution: We will use MATLAB for this problem. Use the commands

A = [ 1 2 3 4 ;

2 4 6 8 ;

3 6 9 12 ;

4 8 12 16 ];

eig(A)

You should get

ans =

-0.0000

0

0.0000

30.0000

so the eigenvalues of A are 0 and 30. We can also see that the eigenvalue 0 has algebraic
multiplicity 3 and the eigenvalue 30 has algebraic multiplicity 1.

(b) For each eigenvalue λ of A, find a basis of the eigenspace Eλ = Null(A− λI4).
Solution: We will use MATLAB to calculate Eλ = null(A− λI).

• Let λ = 0. Use the commands

B = [ 1 2 3 4 ;

2 4 6 8 ;

3 6 9 12 ;

4 8 12 16 ];

null(B,’r’)

You should get

ans =

-2 -3 -4

1 0 0

0 1 0

0 0 1

Therefore a basis for the eigenspace is

B0 =



−2
1
0
0

 ,

−3
0
1
0

 ,

−4
0
0
1




This shows us that the eigenvalue 0 has geometric multiplicity 3.
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• Let λ = 30. Use the commands

B = [ -29 2 3 4 ;

2 -26 6 8 ;

3 6 -21 12 ;

4 8 12 -14 ];

null(B,’r’)

You should get

ans =

1

2

3

4

Therefore a basis for the eigenspace is

B30 =




1
2
3
4




This shows us that the eigenvalue 30 has geometric multiplicity 1.

(c) Is A diagonalizable? If so, find a diagonal matrix D and an invertible matrix Q such
that A = QDQ−1.

Solution: Yes, A is diagonalizable. Notice that for each eigenvalue the geometric
multiplicity matches the algebraic multiplicity. The diagonal matrix D is the matrix
whose diagonal entries are the eigenvalues of A:

D =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 30

 .
Notice that the number of times an eigenvalue occurs on the diagonal matches the
multiplicity of the eigenvalue. The matrix Q is formed by the basis vectors for the
eigenspaces as found in part (b):

Q =


−2 −3 −4 1
1 0 0 2
0 1 0 3
0 0 1 4

 .
Notice that the order of the eigenvectors in Q matches the order of the eigenvalues
along the diagonal in D. That is, the first three columns in Q are the eigenvectors with
eigenvalue 0, just as the first three eigenvalues along the diagonal of D are 0.
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