Homework 4

Due 02/14/2020

In the following problems, make sure to write your arguments coherently in full sentences. Start a sentence with words rather than a formula. Use words to transition your ideas, for example "This leads to", "Therefore", "We want to show", etc.

- 1. Consider a linear map $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ given by $T(u)(x) = x \frac{d}{dx} (u(2x+1))$.
 - (a) Find $[T]_{\mathcal{B}}$, the matrix of T with respect to the basis $\mathcal{B} = \{1, x, x^2\}$ of $P_2(\mathbb{R})$.
 - (b) Find the eigenvalues of T.
 - (c) For each eigenvalue, find the eigenvectors associated to the eigenvalue (as polynomials in $P_2(\mathbb{R})$).
 - (d) Find a basis \mathcal{B}' of $P_2(\mathbb{R})$ such that $[T]_{\mathcal{B}'}$ is a diagonal matrix (if possible).
- 2. Let V be real vector space (i.e. a vector space over \mathbb{R}). Let S and T be two linear maps from V to V. Suppose S be invertible.
 - (a) Show that $\lambda \in \mathbb{R}$ is an eigenvalue of T if and only if λ is an eigenvalue of $S \circ T \circ S^{-1}$.
 - (b) Give a description of the set of eigenvectors of STS^{-1} associated to an eigenvalue λ in terms of the eigenvectors of T associated to λ .
- 3. Two matrices $A, B \in M_{n \times n}(F)$ are said to be *similar* if there is an invertible matrix P such that $A = PBP^{-1}$.
 - (a) Is it true that two matrices that are similar to each other must have the same set of eigenvalues? Explain your answer.
 - (b) Is it true that two matrices that have the same set of eigenvalues must be similar to each other? Explain your answer.
- 4. The trace of a square matrix is defined as the sum of the entries on the diagonal. Let $A, B \in M_{2\times 2}(F)$, where F is a field of numbers. Show that $\operatorname{trace}(AB) = \operatorname{trace}(BA)$. Then use this result to show that similar matrices have the same trace.

Do the following problem for 6 bonus points. You are encouraged to use Matlab to do it. Make sure to write the commands you use and the outputs on your homework.

5. Let

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 9 & 12 \\ 4 & 8 & 12 & 16 \end{bmatrix}.$$

- (a) Find the eigenvalues of A.
- (b) For each eigenvalue λ of A, find a basis of the eigenspace $E_{\lambda} = \text{null}(A \lambda I_4)$.
- (c) Is A diagonalizable? If so, find a diagonal matrix D and an invertible matrix Q such that $A = QDQ^{-1}$.