Homework 5
 Answer Key

1. Let $f: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ be a the linear map given by $f(A)=A C-C A$ where

$$
C=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Is f diagonalizable? If it is, find a basis of $V=M_{2 \times 2}(\mathbb{R})$ in which f is represented by a diagonal matrix.
Solution: We start by finding the matrix of f with respect to the basis

$$
\mathcal{S}=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

for $M_{2 \times 2}(\mathbb{R})$. I will omit the details. The matrix is

$$
A=[f]_{\mathcal{S}}=\left[\begin{array}{rrrr}
0 & 1 & -1 & 0 \\
1 & 0 & 0 & -1 \\
-1 & 0 & 0 & 1 \\
0 & -1 & 1 & 0
\end{array}\right]
$$

Now we find the reduced the characteristic polynomial (I will again omit the details):

$$
\operatorname{det}(A-\lambda I)=\lambda^{4}-4 \lambda^{2}=\lambda^{2}(2-\lambda)(2+\lambda)
$$

Setting the characteristic polynomial equal to zero gives

$$
\lambda^{2}(2-\lambda)(2+\lambda)=0 \quad \rightarrow \quad \lambda=0,2,-2 .
$$

We now need to find a basis for each eigenspace.

- $\boldsymbol{\lambda}=0$: We first want to find $\operatorname{null}(A-\lambda I)$. That is, we want to solve $(A-\lambda I) v=0$ for v. The augmented system for this equation is

$$
\left[\begin{array}{rrrr|r}
0 & 1 & -1 & 0 & 0 \\
1 & 0 & 0 & -1 & 0 \\
-1 & 0 & 0 & 1 & 0 \\
0 & -1 & 1 & 0 & 0
\end{array}\right] \xrightarrow{\text { Reduce }}\left[\begin{array}{rrrr|r}
1 & 0 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

This gives the equations

$$
\begin{aligned}
& v_{1}-v_{4}=0 \\
& v_{2}-v_{3}=0
\end{aligned} \quad \rightarrow \quad \begin{aligned}
& v_{1}=v_{4} \\
& v_{2}=v_{3}
\end{aligned}
$$

The eigenvector v is then

$$
v=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{2} \\
v_{1}
\end{array}\right]=v_{1}\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]+v_{2}\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right], \quad v_{1}, v_{2} \in \mathbb{R}
$$

Notice that the vectors $\left.\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\right]^{T}$ and $\left[\begin{array}{llll}0 & 1 & 1 & 0\end{array}\right]^{T}$ are linearly independent, since neither is a scalar multiple of the other.

We now need to convert these column vectors back into 2×2 matrices:

$$
\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \rightarrow \quad\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right] \rightarrow\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Therefore a basis for the eigenspace E_{0} is

$$
\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\right\}
$$

- $\boldsymbol{\lambda}=\mathbf{2}$: The augmented system for the equation $(A-\lambda I) v=0$ is

$$
\left[\begin{array}{rrrr|r}
-2 & 1 & -1 & 0 & 0 \\
1 & -2 & 0 & -1 & 0 \\
-1 & 0 & -2 & 1 & 0 \\
0 & -1 & 1 & -2 & 0
\end{array}\right] \xrightarrow{\text { Reduce }}\left[\begin{array}{rrrr|r}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

This gives the equations

$$
\begin{aligned}
& v_{1}+v_{4}=0 \\
& v_{2}+v_{4}=0 \\
& v_{3}-v_{4}=0
\end{aligned} \quad \rightarrow \quad \begin{aligned}
& v_{1}=-v_{4} \\
& v_{2}=-v_{4} \\
& v_{3}=v_{4} .
\end{aligned}
$$

The eigenvector v is

$$
v=v_{4}\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
1
\end{array}\right], \quad v_{4} \in \mathbb{R}
$$

Converting to a 2×2 matrix gives a basis for E_{2} :

$$
\left\{\left[\begin{array}{rr}
-1 & -1 \\
1 & 1
\end{array}\right]\right\} .
$$

- $\boldsymbol{\lambda}=\mathbf{- 2}$: The augmented system for the equation $(A-\lambda I) v=0$ is

$$
\left[\begin{array}{rrrr|r}
2 & 1 & -1 & 0 & 0 \\
1 & 2 & 0 & -1 & 0 \\
-1 & 0 & 2 & 1 & 0 \\
0 & -1 & 1 & 2 & 0
\end{array}\right] \xrightarrow{\text { Reduce }}\left[\begin{array}{rrrr|r}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

This gives the equations

$$
\begin{aligned}
& v_{1}+v_{4}=0 \\
& v_{2}+v_{4}=0 \\
& v_{3}-v_{4}=0
\end{aligned} \quad \rightarrow \quad \begin{aligned}
& v_{1}=-v_{4} \\
& v_{2}=v_{4} \\
& v_{3}=-v_{4} .
\end{aligned}
$$

The eigenvector v is

$$
v=v_{4}\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right], \quad v_{4} \in \mathbb{R}
$$

Converting to a 2×2 matrix gives a basis for E_{2} :

$$
\left\{\left[\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right]\right\} .
$$

For each eigenvalue, the geometric multiplicity matches the algebraic multiplicity, so the matrix is diagonalizable. We form the desired basis for $M_{2 \times 2}(\mathbb{R})$ by combining the bases for the eigenspaces:

$$
\mathcal{B}=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{rr}
-1 & -1 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right]\right\}
$$

The matrix for f with respect to the basis \mathcal{B} is then the diagonal matrix with the eigenvalues along the diagonal:

$$
[f]_{\mathcal{B}}=\left[\begin{array}{rrrr}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & -2
\end{array}\right]
$$

Notice that the order of the eigenvalues along the diagonal of $[f]_{C B}$ is the same as the order of the associated eigenvectors in the basis \mathcal{B}.
2. On \mathbb{R}^{2} let us consider three operators $(\cdot, \cdot)_{1},(\cdot, \cdot)_{2},(\cdot, \cdot)_{3}$ given by

$$
\begin{aligned}
(x, y)_{1} & =x_{1} y_{1}+2 x_{2} y_{2} \\
(x, y)_{2} & =x_{1} x_{2}+y_{1} y_{2} \\
(x, y)_{3} & =\left(x_{1}+x_{2}\right)\left(y_{1}+y_{2}\right)
\end{aligned}
$$

where $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ and $y=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$. Which of these operators are inner products on \mathbb{R}^{2} ? Which are not? Explain your answer with proof or counterexample.

Solution:

- $(\boldsymbol{x}, \boldsymbol{y})_{1}=\boldsymbol{x}_{1} \boldsymbol{y}_{1}+\boldsymbol{2} \boldsymbol{x}_{2} \boldsymbol{y}_{2}$: This is an inner product. We will need to prove each property of the inner product. Let

$$
u=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \in \mathbb{R}^{2}, \quad v=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \in \mathbb{R}^{2}, \quad w=\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right] \in \mathbb{R}^{2}, \quad \text { and } \quad \lambda \in \mathbb{R}
$$

- Positivity:

$$
(v, v)_{1}=\left(v_{1}\right)^{2}+2\left(v_{2}\right)^{2} \geq 0+0 \geq 0
$$

since the square of a real number is always greater than or equal to 0 .

- Definiteness: First note that

$$
(0,0)_{1}=0^{2}+2(0)^{2}=0
$$

Now suppose

$$
(v, v)_{1}=\left(v_{1}\right)^{2}+2\left(v_{2}\right)^{2}=0
$$

Since $\left(v_{1}\right)^{2}$ and $2\left(v_{2}\right)^{2}$ are both greater than or equal to zero, the only way to make this equation true is if $\left(v_{1}\right)^{2}=0$ and $2\left(v_{2}\right)^{2}=0$. Solving for v_{1} and v_{2} gives $v_{1}=0$ and $v_{2}=0$. Therefore $v=(0,0)$.

- Additivity in the first component:

$$
\begin{aligned}
(u+v, w)_{1} & =\left(u_{1}+v_{1}\right) w_{1}+2\left(u_{2}+v_{2}\right) w_{2} \\
& =u_{1} w_{1}+v_{1} w_{1}+2 u_{2} w_{2}+2 v_{2} w_{2} \\
& =\left(u_{1} w_{1}+2 u_{2} w_{2}\right)+\left(v_{1} w_{1}+2 v_{2} w_{2}\right) \\
& =(u, w)_{1}+(v, w)_{1}
\end{aligned}
$$

- Homogeneity in the first component:

$$
\begin{aligned}
(\lambda u, v)_{1} & =\left(\lambda u_{1}\right) v_{1}+2\left(\lambda u_{2}\right) v_{2} \\
& =\lambda\left(u_{1} v_{1}+2 u_{2} v_{2}\right) \\
& =\lambda(u, v)_{1}
\end{aligned}
$$

- Conjugate symmetry: Note that for any real number a, the complex conjugate is $\bar{a}=a$. Now

$$
\begin{aligned}
\overline{(v, u)_{1}} & =\overline{v_{1} u_{1}+v_{2} u_{2}} \\
& =v_{1} u_{1}+v_{2} u_{2} \quad \text { since } v_{1} u_{1}+v_{2} u_{2} \text { is a real number } \\
& =u_{1} v_{1}+u_{2} v_{2} \\
& =(u, v)_{1} .
\end{aligned}
$$

- $(x, y)_{2}=x_{1} x_{2}+y_{1} y_{2}$: This is not an inner product. In fact, the only property that this operator satisfies is conjugate symmetry. You only need to give a single counterexample, but I will give a counterexample for each property that is not satisfied.
- Positivity:

$$
\left(\left[\begin{array}{c}
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right)_{2}=(1)(-1)+(1)(-1)=-2<0
$$

- Definiteness:

$$
\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)_{2}=(1)(0)+(1)(0)=0
$$

- Additivity in the first component:

$$
\begin{aligned}
\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right)_{2} & =\left(\left[\begin{array}{l}
2 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right)_{2} \\
& =(2)(2)+(0)(0) \\
& =4
\end{aligned}
$$

but

$$
\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right)_{2}+\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right)_{2}=[(1)(1)+(0)(0)]+[(1)(1)+(0)(0)]=2
$$

- Homogeneity in the first component:

$$
\begin{aligned}
\left(2\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right)_{2} & =\left(\left[\begin{array}{l}
2 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right)_{2} \\
& =(2)(2)+(0)(0)=4
\end{aligned}
$$

but

$$
2\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right)_{2}=2[(1)(1)+(0)(0)]=2
$$

- $(x, y)_{3}=\left(x_{1}+x_{2}\right)\left(y_{1}+y_{2}\right):$ This is not an inner product. The only property that it does not satisfy is definiteness:

$$
\left(\left[\begin{array}{c}
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right)_{3}=(1-1)(1-1)=(0)(0)=0
$$

3. On \mathbb{C}^{2} consider the vectors $u_{1}=\left[\begin{array}{l}i \\ 1\end{array}\right]$ and $u_{2}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. Let (\cdot, \cdot) be an inner product on \mathbb{C}^{2} that satisfies

$$
\left(u_{1}, u_{2}\right)=i, \quad\left(u_{1}, u_{1}\right)=3, \quad\left(u_{2}, u_{2}\right)=1 .
$$

Compute $\left(\left[\begin{array}{c}i+1 \\ 2 i\end{array}\right],\left[\begin{array}{l}1 \\ i\end{array}\right]\right)$.
Solution: First we need to write the vectors $\left[\begin{array}{c}i+1 \\ 2 i\end{array}\right]$ and $\left[\begin{array}{l}1 \\ i\end{array}\right]$ in terms of u_{1} and u_{2} :

$$
\begin{aligned}
{\left[\begin{array}{c}
i+1 \\
2 i
\end{array}\right] } & =(2 i) u_{1}+(3+i) u_{2} \\
{\left[\begin{array}{l}
1 \\
i
\end{array}\right] } & =(i) u_{1}+\quad(2) u_{2} .
\end{aligned}
$$

We can now use linearity in the first component, conjugate linearity in the second component, and conjugate symmetry to calculate:

$$
\begin{aligned}
\left(\left[\begin{array}{c}
i+1 \\
2 i
\end{array}\right],\left[\begin{array}{c}
1 \\
i
\end{array}\right]\right) & =\quad\left((2 i) u_{1}+(3+i) u_{2},(i) u_{1}+(2) u_{2}\right) \\
& =(2 i)\left(u_{1},(i) u_{1}+(2) u_{2}\right)+\quad(3+i)\left(u_{2},(i) u_{1}+(2) u_{2}\right) \\
& =(2 i) \overline{(i)}\left(u_{1}, u_{1}\right)+(2 i) \overline{(2)}\left(u_{1}, u_{2}\right)+(3+i) \overline{(i)}\left(u_{2}, u_{1}\right)+(3+i) \overline{(2)}\left(u_{2}, u_{2}\right) \\
& =(2 i) \overline{(i)}\left(u_{1}, u_{1}\right)+(2 i) \overline{(2)}\left(u_{1}, u_{2}\right)+(3+i) \overline{(i)} \overline{\left(u_{1}, u_{2}\right)}+(3+i) \overline{(2)}\left(u_{2}, u_{2}\right) \\
& =(2 i)(-i)(3)+(2 i)(2)(i) \quad+(3+i)(-i)(-i)+(3+i)(2)(1) \\
& =(6) \\
& =11+3 i .
\end{aligned}
$$

4. Let V be a vector space of dimension n over $F=\mathbb{Q}, \mathbb{R}$ or \mathbb{C}. Let \mathcal{B} be a basis a V. Consider the operator (\cdot, \cdot) on V given by

$$
(u, v)=c_{1} \bar{d}_{1}+c_{2} \bar{d}_{2}+\cdots+c_{n} \bar{d}_{n}
$$

where

$$
[u]_{\mathcal{B}}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right], \quad[v]_{\mathcal{B}}=\left[\begin{array}{c}
d_{1} \\
\vdots \\
d_{n}
\end{array}\right] .
$$

Show that (\cdot, \cdot) is an inner product on V.
Solution: We need to prove each property of an inner product space. Let

$$
[u]_{\mathcal{B}}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right], \quad[v]_{\mathcal{B}}=\left[\begin{array}{c}
d_{1} \\
\vdots \\
d_{n}
\end{array}\right], \quad[w]_{\mathcal{B}}=\left[\begin{array}{c}
e_{1} \\
\vdots \\
e_{n}
\end{array}\right]
$$

and let $\lambda \in F$.

- Positivity: Recall that any complex number z can be written as $x+i y$ where $x, y \in \mathbb{R}$. We then have

$$
z \bar{z}=(x+i y)(x-i y)=x^{2}+y^{2} \geq 0
$$

since the square of any real number is always greater than or equal to 0 . Therefore

$$
(u, u)=c_{1} \bar{c}_{1}+c_{2} \bar{c}_{2}+\cdots+c_{n} \bar{c}_{n} \geq 0
$$

- Definiteness: This is an if and only if statement, so we need to show both directions. (\Rightarrow) We saw in the proof of positivity that,

$$
(u, u)=c_{1} \bar{c}_{1}+c_{2} \bar{c}_{2}+\cdots+c_{n} \bar{c}_{n}
$$

is the sum of real number that are each greater than or equal to 0 . If this sum is equal to 0 , then each term in the sum must be 0 . That is,

$$
c_{k} \bar{c}_{k}=0 \quad \text { for every } k=1, \ldots, n
$$

If we write $c_{k}=x+i y$ where $x, y \in \mathbb{R}$, then

$$
0=c_{k} \bar{c}_{k}=x^{2}+y^{2},
$$

so $x=y=0$. Therefore $c_{k}=0$ for every $k=1, \ldots, n$, so $u=0$.
(\Leftarrow) If $u=0$, then

$$
(u, u)=0 \cdot \overline{0}+0 \cdot \overline{0}+\cdots+0 \cdot \overline{0}=0 .
$$

- Additivity in the first component:

$$
\begin{aligned}
(u+v, w) & =\left(c_{1}+d_{1}\right) \bar{e}_{1}+\left(c_{2}+d_{2}\right) \bar{e}_{2}+\cdots+\left(c_{n}+d_{n}\right) \bar{e}_{n} \\
& =c_{1} \bar{e}_{1}+d_{1} \bar{e}_{1}+c_{2} \bar{e}_{2}+d_{2} \bar{e}_{2}+\cdots+c_{n} \bar{e}_{n}+d_{n} \bar{e}_{n} \\
& =\left(c_{1} \bar{e}_{1}+c_{2} \bar{e}_{2}+\cdots+c_{n} \bar{e}_{n}\right)+\left(d_{1} \bar{e}_{1}+d_{2} \bar{e}_{2}+\cdots+d_{n} \bar{e}_{n}\right) \\
& =(u, w)+(v, w) .
\end{aligned}
$$

- Homogeneity in the first component:

$$
\begin{aligned}
(\lambda u, v) & =\left(\lambda c_{1}\right) \bar{d}_{1}+\left(\lambda c_{2}\right) \bar{d}_{2}+\cdots+\left(\lambda c_{n}\right) \bar{d}_{n} \\
& =\lambda\left(c_{1} \bar{d}_{1}+c_{2} \bar{d}_{2}+\cdots+c_{n} \bar{d}_{n}\right) \\
& =\lambda(u, v)
\end{aligned}
$$

- Conjugate symmetry:

$$
\begin{aligned}
\overline{(v, u)} & =\overline{c_{1} \bar{d}_{1}+c_{2} \bar{d}_{2}+\cdots+c_{n} \bar{d}_{n}} \\
& =\bar{c}_{1} d_{1}+\bar{c}_{2} d_{2}+\cdots+\bar{c}_{n} d_{n} \\
& =d_{1} \bar{c}_{1}+d_{2} \bar{c}_{2}+\cdots+d_{n} \bar{c}_{n} \\
& =(u, v) .
\end{aligned}
$$

5. On \mathbb{R}^{2}, consider two vectors $v_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $v_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$. Define an inner product on \mathbb{R}^{2} so that v_{1} and v_{2} are orthogonal to each other (i.e. having inner product equal to zero).
Solution: The easiest way to do this is probably to follow something similar to what was done in problem 4. Notice that

$$
\mathcal{B}=\left\{v_{1}, v_{2}\right\}=\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right\}
$$

is linearly independent, because neither vector is a scalar multiple of the other. Since \mathbb{R}^{2} has dimension 2, this means that \mathcal{B} is a basis for \mathbb{R}^{2}. Now we can define our inner product (\cdot, \cdot) in a very similar way to how the inner product was defined in problem 4:

$$
(u, v)=c_{1} d_{1}+c_{2} d_{2}
$$

where

$$
[u]_{\mathcal{B}}=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right], \quad[v]_{\mathcal{B}}=\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right]
$$

Since v_{1} and v_{2} are the elements of \mathcal{B}, they can easily be written in \mathcal{B} coordinates:

$$
\left[v_{1}\right]_{\mathcal{B}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad\left[v_{2}\right]_{\mathcal{B}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

Then

$$
\left(v_{1}, v_{2}\right)=(1)(0)+(0)(1)=0,
$$

so v_{1} and v_{2} are orthogonal to each other, as desired.
We now want to show that (\cdot, \cdot) is an inner product, so we need to prove each inner product property. Let

$$
[u]_{\mathcal{B}}=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right], \quad[v]_{\mathcal{B}}=\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right], \quad[w]_{\mathcal{B}}=\left[\begin{array}{l}
e_{1} \\
e_{2}
\end{array}\right]
$$

and let $\lambda \in \mathbb{R}$.

- Positivity:

$$
(u, u)=\left(c_{1}\right)^{2}+\left(c_{2}\right)^{2} \geq 0
$$

since the square of any real number is always greater than or equal to 0 .

- Definiteness: This is an if and only if statement, so we need to show both directions.
(\Rightarrow) since the square of any real number is always greater than or equal to 0 , the only way to get

$$
(u, u)=\left(c_{1}\right)^{2}+\left(c_{2}\right)^{2}=0
$$

is if $\left(c_{1}\right)^{2}=0$ and $\left(c_{2}\right)^{2}=0$. This implies that $c_{1}=0$ and $c_{2}=0$, so $u=0$.
(\Leftarrow) If $u=0$, then

$$
[u]_{\mathcal{B}}=\left[\begin{array}{l}
0 \\
0
\end{array}\right],
$$

so

$$
(u, u)=0 \cdot 0+0 \cdot 0=0 .
$$

- Additivity in the first component:

$$
\begin{aligned}
(u+v, w) & =\left(c_{1}+d_{1}\right) e_{1}+\left(c_{2}+d_{2}\right) e_{2} \\
& =c_{1} e_{1}+d_{1} e_{1}+c_{2} e_{2}+d_{2} e_{2} \\
& =\left(c_{1} e_{1}+c_{2} e_{2}\right)+\left(d_{1} e_{1}+d_{2} e_{2}\right) \\
& =(u, w)+(v, w) .
\end{aligned}
$$

- Homogeneity in the first component:

$$
\begin{aligned}
(\lambda u, v) & =\left(\lambda c_{1}\right) d_{1}+\left(\lambda c_{2}\right) d_{2} \\
& =\lambda\left(c_{1} d_{1}+c_{2} d_{2}\right) \\
& =\lambda(u, v)
\end{aligned}
$$

- Conjugate symmetry:

$$
\begin{aligned}
\overline{(v, u)} & =\overline{c_{1} d_{1}+c_{2} d_{2}} \\
& =c_{1} d_{1}+c_{2} d_{2} \quad \text { since } c_{1} d_{1}+c_{2} d_{2} \text { is a real number } \\
& =d_{1} c_{1}+d_{2} c_{2} \\
& =(u, v) .
\end{aligned}
$$

