
Homework 5
Answer Key

1. Let f : M2×2(R)→M2×2(R) be a the linear map given by f(A) = AC − CA where

C =

[
0 1
1 0

]
.

Is f diagonalizable? If it is, find a basis of V = M2×2(R) in which f is represented by a
diagonal matrix.

Solution: We start by finding the matrix of f with respect to the basis

S =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
for M2×2(R). I will omit the details. The matrix is

A = [f ]S =


0 1 −1 0
1 0 0 −1
−1 0 0 1

0 −1 1 0

 .
Now we find the reduced the characteristic polynomial (I will again omit the details):

det(A− λI) = λ4 − 4λ2 = λ2(2− λ)(2 + λ).

Setting the characteristic polynomial equal to zero gives

λ2(2− λ)(2 + λ) = 0 → λ = 0, 2,−2.

We now need to find a basis for each eigenspace.

• λ = 0: We first want to find null(A − λI). That is, we want to solve (A − λI)v = 0
for v. The augmented system for this equation is

0 1 −1 0 0
1 0 0 −1 0
−1 0 0 1 0

0 −1 1 0 0

 Reduce−−−−→


1 0 0 −1 0
0 1 −1 0 0
0 0 0 0 0
0 0 0 0 0

 .
This gives the equations

v1 − v4 = 0
v2 − v3 = 0

→ v1 = v4
v2 = v3.

The eigenvector v is then

v =


v1
v2
v3
v4

 =


v1
v2
v2
v1

 = v1


1
0
0
1

+ v2


0
1
1
0

 , v1, v2 ∈ R.

Notice that the vectors [1 0 0 1]T and [0 1 1 0]T are linearly independent, since neither
is a scalar multiple of the other.
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We now need to convert these column vectors back into 2× 2 matrices:
1
0
0
1

 →
[
1 0
0 1

]
, →


0
1
1
0

 →
[
0 1
1 0

]
.

Therefore a basis for the eigenspace E0 is{[
1 0
0 1

]
,

[
0 1
1 0

]}
.

• λ = 2: The augmented system for the equation (A− λI)v = 0 is
−2 1 −1 0 0

1 −2 0 −1 0
−1 0 −2 1 0

0 −1 1 −2 0

 Reduce−−−−→


1 0 0 1 0
0 1 0 1 0
0 0 1 −1 0
0 0 0 0 0

 .
This gives the equations

v1 + v4 = 0
v2 + v4 = 0
v3 − v4 = 0

→
v1 = −v4
v2 = −v4
v3 = v4.

The eigenvector v is

v = v4


−1
−1
1
1

 , v4 ∈ R.

Converting to a 2× 2 matrix gives a basis for E2:{[
−1 −1

1 1

]}
.

• λ = −2: The augmented system for the equation (A− λI)v = 0 is
2 1 −1 0 0
1 2 0 −1 0
−1 0 2 1 0

0 −1 1 2 0

 Reduce−−−−→


1 0 0 1 0
0 1 0 −1 0
0 0 1 1 0
0 0 0 0 0

 .
This gives the equations

v1 + v4 = 0
v2 + v4 = 0
v3 − v4 = 0

→
v1 = −v4
v2 = v4
v3 = −v4.

The eigenvector v is

v = v4


−1
1
−1
1

 , v4 ∈ R.

Converting to a 2× 2 matrix gives a basis for E2:{[
−1 1
−1 1

]}
.
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For each eigenvalue, the geometric multiplicity matches the algebraic multiplicity, so the
matrix is diagonalizable. We form the desired basis for M2×2(R) by combining the bases for
the eigenspaces:

B =

{[
1 0
0 1

]
,

[
0 1
1 0

]
,

[
−1 −1

1 1

]
,

[
−1 1
−1 1

]}
.

The matrix for f with respect to the basis B is then the diagonal matrix with the eigenvalues
along the diagonal:

[f ]B =


0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 −2

 .
Notice that the order of the eigenvalues along the diagonal of [f ]CB is the same as the order
of the associated eigenvectors in the basis B.

2. On R2 let us consider three operators (·, ·)1, (·, ·)2, (·, ·)3 given by

(x, y)1 = x1y1 + 2x2y2,

(x, y)2 = x1x2 + y1y2,

(x, y)3 = (x1 + x2)(y1 + y2)

where x =

[
x1
x2

]
and y =

[
y1
y2

]
. Which of these operators are inner products on R2? Which

are not? Explain your answer with proof or counterexample.

Solution:

• (x, y)1 = x1y1 + 2x2y2 : This is an inner product. We will need to prove each prop-
erty of the inner product. Let

u =

[
u1
u2

]
∈ R2, v =

[
v1
v2

]
∈ R2, w =

[
w1

w2

]
∈ R2, and λ ∈ R.

– Positivity:
(v, v)1 = (v1)

2 + 2(v2)
2 ≥ 0 + 0 ≥ 0.

since the square of a real number is always greater than or equal to 0.

– Definiteness: First note that

(0, 0)1 = 02 + 2(0)2 = 0.

Now suppose
(v, v)1 = (v1)

2 + 2(v2)
2 = 0.

Since (v1)
2 and 2(v2)

2 are both greater than or equal to zero, the only way to make
this equation true is if (v1)

2 = 0 and 2(v2)
2 = 0. Solving for v1 and v2 gives v1 = 0

and v2 = 0. Therefore v = (0, 0).

– Additivity in the first component:

(u+ v, w)1 = (u1 + v1)w1 + 2(u2 + v2)w2

= u1w1 + v1w1 + 2u2w2 + 2v2w2

= (u1w1 + 2u2w2) + (v1w1 + 2v2w2)

= (u,w)1 + (v, w)1.
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– Homogeneity in the first component:

(λu, v)1 = (λu1)v1 + 2(λu2)v2

= λ(u1v1 + 2u2v2)

= λ(u, v)1

– Conjugate symmetry: Note that for any real number a, the complex conjugate
is a = a. Now

(v, u)1 = v1u1 + v2u2

= v1u1 + v2u2 since v1u1 + v2u2 is a real number

= u1v1 + u2v2

= (u, v)1.

• (x, y)2 = x1x2 + y1y2 : This is not an inner product. In fact, the only property that
this operator satisfies is conjugate symmetry. You only need to give a single counterex-
ample, but I will give a counterexample for each property that is not satisfied.

– Positivity: ([
1
−1

]
,

[
1
−1

])
2

= (1)(−1) + (1)(−1) = −2 < 0

– Definiteness: ([
1
0

]
,

[
1
0

])
2

= (1)(0) + (1)(0) = 0,

– Additivity in the first component:([
1
1

]
+

[
1
1

]
,

[
0
0

])
2

=

([
2
2

]
,

[
0
0

])
2

= (2)(2) + (0)(0)

= 4,

but ([
1
1

]
,

[
0
0

])
2

+

([
1
1

]
,

[
0
0

])
2

= [(1)(1) + (0)(0)] + [(1)(1) + (0)(0)] = 2.

– Homogeneity in the first component:(
2

[
1
1

]
,

[
0
0

])
2

=

([
2
2

]
,

[
0
0

])
2

= (2)(2) + (0)(0) = 4,

but

2

([
1
1

]
,

[
0
0

])
2

= 2[(1)(1) + (0)(0)] = 2.

• (x, y)3 = (x1 + x2)(y1 + y2) : This is not an inner product. The only property that
it does not satisfy is definiteness:([

1
−1

]
,

[
1
−1

])
3

= (1− 1)(1− 1) = (0)(0) = 0
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3. On C2 consider the vectors u1 =

[
i
1

]
and u2 =

[
1
0

]
. Let (·, ·) be an inner product on C2 that

satisfies
(u1, u2) = i, (u1, u1) = 3, (u2, u2) = 1.

Compute

([
i+ 1

2i

]
,

[
1
i

])
.

Solution: First we need to write the vectors

[
i+ 1

2i

]
and

[
1
i

]
in terms of u1 and u2:

[
i+ 1

2i

]
= (2i)u1 + (3 + i)u2[

1
i

]
= (i)u1 + (2)u2.

We can now use linearity in the first component, conjugate linearity in the second component,
and conjugate symmetry to calculate:([

i+ 1
2i

]
,

[
1
i

])
=

=

=

=

=

=

=

(
(2i)u1 + (3 + i)u2, (i)u1 + (2)u2

)
(2i)

(
u1, (i)u1 + (2)u2

)
+ (3 + i)

(
u2, (i)u1 + (2)u2

)
(2i)(i)

(
u1, u1

)
+ (2i)(2)

(
u1, u2

)
(2i)(i)

(
u1, u1

)
+ (2i)(2)

(
u1, u2

)
(2i)(−i)(3) + (2i)(2)(i)

(6) + (−4)

11 + 3i.

+

+

+

+

(3 + i)(i)
(
u2, u1

)
+ (3 + i)(2)

(
u2, u2

)
(3 + i)(i)

(
u1, u2

)
+ (3 + i)(2)

(
u2, u2

)
(3 + i)(−i)(−i) + (3 + i)(2)(1)

(3 + i) + (6 + 2i)

4. Let V be a vector space of dimension n over F = Q, R or C. Let B be a basis a V . Consider
the operator (·, ·) on V given by

(u, v) = c1d̄1 + c2d̄2 + · · ·+ cnd̄n

where

[u]B =

c1...
cn

 , [v]B =

d1...
dn

 .
Show that (·, ·) is an inner product on V .

Solution: We need to prove each property of an inner product space. Let

[u]B =

c1...
cn

 , [v]B =

d1...
dn

 , [w]B =

e1...
en

 ,
and let λ ∈ F .
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• Positivity: Recall that any complex number z can be written as x+ iy where x, y ∈ R.
We then have

zz̄ = (x+ iy)(x− iy) = x2 + y2 ≥ 0

since the square of any real number is always greater than or equal to 0. Therefore

(u, u) = c1c̄1 + c2c̄2 + · · ·+ cnc̄n ≥ 0

• Definiteness: This is an if and only if statement, so we need to show both directions.

(⇒) We saw in the proof of positivity that,

(u, u) = c1c̄1 + c2c̄2 + · · ·+ cnc̄n

is the sum of real number that are each greater than or equal to 0. If this sum is
equal to 0, then each term in the sum must be 0. That is,

ck c̄k = 0 for every k = 1, . . . , n.

If we write ck = x+ iy where x, y ∈ R, then

0 = ck c̄k = x2 + y2,

so x = y = 0. Therefore ck = 0 for every k = 1, . . . , n, so u = 0.

(⇐) If u = 0, then
(u, u) = 0 · 0̄ + 0 · 0̄ + · · ·+ 0 · 0̄ = 0.

• Additivity in the first component:

(u+ v, w) = (c1 + d1)ē1 + (c2 + d2)ē2 + · · ·+ (cn + dn)ēn

= c1ē1 + d1ē1 + c2ē2 + d2ē2 + · · ·+ cnēn + dnēn

=
(
c1ē1 + c2ē2 + · · ·+ cnēn

)
+
(
d1ē1 + d2ē2 + · · ·+ dnēn

)
= (u,w) + (v, w).

• Homogeneity in the first component:

(λu, v) = (λc1)d̄1 + (λc2)d̄2 + · · ·+ (λcn)d̄n

= λ(c1d̄1 + c2d̄2 + · · ·+ cnd̄n)

= λ(u, v)

• Conjugate symmetry:

(v, u) = c1d̄1 + c2d̄2 + · · ·+ cnd̄n

= c̄1d1 + c̄2d2 + · · ·+ c̄ndn

= d1c̄1 + d2c̄2 + · · ·+ dnc̄n

= (u, v).
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5. On R2, consider two vectors v1 =

[
1
2

]
and v2 =

[
−1
1

]
. Define an inner product on R2 so that

v1 and v2 are orthogonal to each other (i.e. having inner product equal to zero).

Solution: The easiest way to do this is probably to follow something similar to what was
done in problem 4. Notice that

B = {v1, v2} =

{[
1
2

]
,

[
−1
1

]}
is linearly independent, because neither vector is a scalar multiple of the other. Since R2 has
dimension 2, this means that B is a basis for R2. Now we can define our inner product (·, ·)
in a very similar way to how the inner product was defined in problem 4:

(u, v) = c1d1 + c2d2

where

[u]B =

[
c1
c2

]
, [v]B =

[
d1
d2

]
.

Since v1 and v2 are the elements of B, they can easily be written in B coordinates:

[v1]B =

[
1
0

]
, [v2]B =

[
0
1

]
.

Then
(v1, v2) = (1)(0) + (0)(1) = 0,

so v1 and v2 are orthogonal to each other, as desired.

We now want to show that (·, ·) is an inner product, so we need to prove each inner product
property. Let

[u]B =

[
c1
c2

]
, [v]B =

[
d1
d2

]
, [w]B =

[
e1
e2

]
,

and let λ ∈ R.

• Positivity:
(u, u) = (c1)

2 + (c2)
2 ≥ 0

since the square of any real number is always greater than or equal to 0.

• Definiteness: This is an if and only if statement, so we need to show both directions.

(⇒) since the square of any real number is always greater than or equal to 0, the only
way to get

(u, u) = (c1)
2 + (c2)

2 = 0

is if (c1)
2 = 0 and (c2)

2 = 0. This implies that c1 = 0 and c2 = 0, so u = 0.

(⇐) If u = 0, then

[u]B =

[
0
0

]
,

so
(u, u) = 0 · 0 + 0 · 0 = 0.
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• Additivity in the first component:

(u+ v, w) = (c1 + d1)e1 + (c2 + d2)e2

= c1e1 + d1e1 + c2e2 + d2e2

=
(
c1e1 + c2e2

)
+
(
d1e1 + d2e2

)
= (u,w) + (v, w).

• Homogeneity in the first component:

(λu, v) = (λc1)d1 + (λc2)d2

= λ(c1d1 + c2d2)

= λ(u, v)

• Conjugate symmetry:

(v, u) = c1d1 + c2d2

= c1d1 + c2d2 since c1d1 + c2d2 is a real number

= d1c1 + d2c2

= (u, v).
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