Homework 5

Due 02/21/2020

In the following problems, make sure to write your arguments coherently in full sentences. Start a sentence with words rather than a formula. Use words to transition your ideas, for example "This leads to", "Therefore", "We want to show", etc.

1. Let $f: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ be a linear map given by f(A) = AC - CA where

$$C = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]$$

Is f diagonalizable? If it is, find a basis of $V = M_{2\times 2}(\mathbb{R})$ in which f is represented by a diagonal matrix.

2. On \mathbb{R}^2 , let us consider three operators $(\cdot, \cdot)_1$, $(\cdot, \cdot)_2$, $(\cdot, \cdot)_3$ given by

$$\begin{aligned} &(x,y)_1 &= x_1y_1 + 2x_2y_2, \\ &(x,y)_2 &= x_1x_2 + y_1y_2, \\ &(x,y)_3 &= (x_1 + x_2)(y_1 + y_2) \end{aligned}$$

where $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and $y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$. Which of these operators are inner products on \mathbb{R}^2 ? Which are not? Explain your answer with proof or counterexample.

3. On \mathbb{C}^2 , consider two vectors $u_1 = \begin{bmatrix} i \\ 1 \end{bmatrix}$ and $u_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Let (\cdot, \cdot) be an inner product that satisfies

$$(u_1, u_2) = i, \quad (u_1, u_1) = 3, \quad (u_2, u_2) = 1.$$

Compute $\left(\begin{bmatrix} i+1\\2i \end{bmatrix}, \begin{bmatrix} 1\\i \end{bmatrix} \right)$.

4. Let V be a vector space over $F = \mathbb{Q}$, \mathbb{R} or \mathbb{C} . Let \mathcal{B} be a basis a V. Consider an operator on V given by

$$(u, v) = c_1 \bar{d}_1 + c_2 \bar{d}_2 + \dots + c_n \bar{d}_n,$$

where

$$[u]_{\mathcal{B}} = \begin{bmatrix} c_1\\ \vdots\\ c_n \end{bmatrix}, \qquad [v]_{\mathcal{B}} = \begin{bmatrix} d_1\\ \vdots\\ d_n \end{bmatrix}$$

Show that (\cdot, \cdot) is an inner product on V.

Do the following problem for 6 bonus points.

5. On \mathbb{R}^2 , consider two vectors $v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $v_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Define an inner product on \mathbb{R}^2 so that v_1 and v_2 are perpendicular to each other (i.e. having inner product equal to zero).