Homework 5

Due 02/21/2020
In the following problems, make sure to write your arguments coherently in full sentences. Start a sentence with words rather than a formula. Use words to transition your ideas, for example "This leads to", "Therefore", "We want to show", etc.

1. Let $f: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ be a linear map given by $f(A)=A C-C A$ where

$$
C=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
$$

Is f diagonalizable? If it is, find a basis of $V=M_{2 \times 2}(\mathbb{R})$ in which f is represented by a diagonal matrix.
2. On \mathbb{R}^{2}, let us consider three operators $(\cdot, \cdot)_{1},(\cdot, \cdot)_{2},(\cdot, \cdot)_{3}$ given by

$$
\begin{aligned}
(x, y)_{1} & =x_{1} y_{1}+2 x_{2} y_{2} \\
(x, y)_{2} & =x_{1} x_{2}+y_{1} y_{2} \\
(x, y)_{3} & =\left(x_{1}+x_{2}\right)\left(y_{1}+y_{2}\right)
\end{aligned}
$$

where $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ and $y=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$. Which of these operators are inner products on \mathbb{R}^{2} ? Which are not? Explain your answer with proof or counterexample.
3. On \mathbb{C}^{2}, consider two vectors $u_{1}=\left[\begin{array}{l}i \\ 1\end{array}\right]$ and $u_{2}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. Let (\cdot, \cdot) be an inner product that satisfies

$$
\left(u_{1}, u_{2}\right)=i, \quad\left(u_{1}, u_{1}\right)=3, \quad\left(u_{2}, u_{2}\right)=1 .
$$

Compute $\left(\left[\begin{array}{c}i+1 \\ 2 i\end{array}\right],\left[\begin{array}{l}1 \\ i\end{array}\right]\right)$.
4. Let V be a vector space over $F=\mathbb{Q}, \mathbb{R}$ or \mathbb{C}. Let \mathcal{B} be a basis a V. Consider an operator on V given by

$$
(u, v)=c_{1} \bar{d}_{1}+c_{2} \bar{d}_{2}+\ldots+c_{n} \bar{d}_{n}
$$

where

$$
[u]_{\mathcal{B}}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right], \quad[v]_{\mathcal{B}}=\left[\begin{array}{c}
d_{1} \\
\vdots \\
d_{n}
\end{array}\right]
$$

Show that (\cdot, \cdot) is an inner product on V.
Do the following problem for 6 bonus points.
5. On \mathbb{R}^{2}, consider two vectors $v_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $v_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$. Define an inner product on \mathbb{R}^{2} so that v_{1} and v_{2} are perpendicular to each other (i.e. having inner product equal to zero).

