Homework 6
 Answer Key

1. Let V be an inner product space with inner product (\cdot, \cdot) and let $\|\cdot\|: V \rightarrow \mathbb{R}$ be given by $\|v\|=\sqrt{(v, v)}$. Show that
(a) (Parallelogram Law)

$$
\|u+v\|^{2}+\|u-v\|^{2}=2\left(\|u\|^{2}+\|v\|^{2}\right) \quad \forall u, v \in V
$$

Solution: Let $u, v \in V$. Then

$$
\begin{aligned}
\|u+v\|^{2}+\|u-v\|^{2} & =(u+v, u+v)+(u-v, u-v) \\
& =(u+v, u+v)+(u, u)-(u, v)-(v, u)+(v, v) \\
& =(u, u)+(u, v)+(v, u)+(v, v)+(u, u)-(u, v)-(v, u)+(v, v) \\
& =2(u, u)+2(v, v) \\
& =2\|u\|^{2}+2\|v\|^{2} \\
& =2\left(\|u\|^{2}+\|v\|^{2}\right) .
\end{aligned}
$$

(b) (Cauchy-Schwartz inequality)

$$
|(u, v)| \leq\|u\|\|v\| \quad \forall u, v \in V
$$

Solution: Before we begin the proof, recall that

$$
\alpha \bar{\alpha}=|\alpha|^{2}
$$

for any $\alpha \in \mathbb{C}$. We now proceed with the proof.
Let $u, v \in V$ and let $F \subseteq \mathbb{C}$ be the field of scalars associated to the vector space V. For any $\alpha \in F$ we have by positivity of the inner product that

$$
0 \leq(\alpha u+v, \alpha u+v) .
$$

Expanding the right-hand side gives

$$
\begin{array}{rlrl}
0 & \leq(\alpha u+v, \alpha u+v) & & \\
& =\alpha(u, \alpha u+v)+(v, \alpha u+v) & & \text { (linearity in the first component) } \\
& =\alpha(\bar{\alpha}(u, u)+(u, v))+\bar{\alpha}(v, u)+(v, v) & \text { (conjugate linearity in the second component) } \\
& =\alpha \bar{\alpha}(u, u)+\alpha(u, v)+\bar{\alpha}(v, u)+(v, v) & & \\
& =\alpha \bar{\alpha}\|u\|^{2}+\alpha(u, v)+\bar{\alpha}(v, u)+\|v\|^{2} & & \\
& =\alpha \bar{\alpha}\|u\|^{2}+\alpha(u, v)+\bar{\alpha} \overline{(u, v)}+\|v\|^{2} & &
\end{array}
$$

Since this is true for all $\alpha \in F$, it must be true for

$$
\alpha=-\frac{\overline{(u, v)}}{\|u\|^{2}} .
$$

Plugging this into our inequality gives

$$
\begin{aligned}
0 & \leq \alpha \bar{\alpha}\|u\|^{2}+\alpha(u, v)+\bar{\alpha} \overline{(u, v)}+\|v\|^{2} \\
& =\left(-\frac{\overline{(u, v)}}{\|u\|^{2}}\right) \overline{\left.\left(-\frac{\overline{(u, v)}}{\|u\|^{2}}\right)\|u\|^{2}+\left(-\frac{\overline{(u, v)}}{\|u\|^{2}}\right)(u, v)+\overline{(-\overline{(u, v)}} \overline{\|u\|^{2}}\right) \overline{(u, v)}+\|v\|^{2}} \\
& =\left(-\frac{\overline{(u, v)}}{\|u\|^{2}}\right)\left(-\frac{(u, v)}{\|u\|^{2}}\right)\|u\|^{2}+\left(-\frac{\overline{(u, v)}}{\|u\|^{2}}\right)(u, v)+\left(-\frac{(u, v)}{\|u\|^{2}}\right) \overline{(u, v)}+\|v\|^{2} \\
& =\left(\frac{\overline{(u, v)}(u, v)}{\|u\|^{2}}\right)-\left(\frac{(u, v)(u, v)}{\|u\|^{2}}\right)-\left(\frac{(u, v) \overline{(u, v)}}{\|u\|^{2}}\right)+\|v\|^{2} \\
& =-\left(\frac{(u, v) \overline{(u, v)}}{\|u\|^{2}}\right)+\|v\|^{2} \\
& =-\frac{|(u, v)|^{2}}{\|u\|^{2}}+\|v\|^{2} .
\end{aligned}
$$

We now add $\frac{|(u, v)|^{2}}{\|u\|^{2}}$ to both sides of the inequality to get

$$
\frac{|(u, v)|^{2}}{\|u\|^{2}} \leq\|v\|^{2} .
$$

Multiplying by $\|u\|^{2}$ gives

$$
|(u, v)|^{2} \leq\|u\|^{2}\|v\|^{2} .
$$

Taking the square root of both sides gives the desired inequality:

$$
|(u, v)| \leq\|u\|\|v\| .
$$

2. On \mathbb{R}^{n} consider the operator $\|\cdot\|_{1}$ defined by

$$
\|x\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right|=\sum_{k=1}^{n}\left|x_{k}\right|
$$

where $x=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$. Show that $\|\cdot\|_{1}$ is a norm on \mathbb{R}^{n}. (This is known as a "taxicab" norm.)
Solution: We need to prove the four properties of a norm. Let $x, y \in \mathbb{R}^{n}$ where

$$
x=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right], \quad y=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right],
$$

and let $\lambda \in \mathbb{R}$.

- Positivity:

$$
\begin{aligned}
\|x\|_{1} & =\sum_{k=1}^{n}\left|x_{k}\right| \\
& \geq \sum_{k=1}^{n} 0 \quad\left(\text { since }\left|x_{k}\right| \geq 0 \text { for each } k=1, \ldots, n\right) \\
& =0 .
\end{aligned}
$$

- Definiteness: This is an if and only if statement, so we need to prove both directions:
- If $x=0$, then

$$
\|x\|_{1}=\sum_{k=1}^{n} 0=0 .
$$

- Suppose $\|x\|_{1}=0$. Then

$$
\sum_{k=1}^{n}\left|x_{k}\right|=\|x\|_{1}=0 .
$$

Since each $\left|x_{k}\right|$ is greater than or equal to 0 , the only way for the above equation to hold is if $\left|x_{k}\right|=0$ for all $k=1, \ldots, n$. Since $\left|x_{k}\right|=0$ implies $x_{k}=0$, we have that every component of x is 0 , so $x=0$.

- Homogeneity:

$$
\begin{array}{rlr}
\|\lambda x\|_{1} & =\sum_{k=1}^{n}\left|\lambda x_{k}\right| & \\
& =\sum_{k=1}^{n}|\lambda|\left|x_{k}\right| & \quad \text { (by homogeneity of the absolute value) } \\
& =|\lambda| \sum_{k=1}^{n}\left|x_{k}\right| & \text { (since } \lambda \text { is a constant not depending on } k \text {) } \\
& =|\lambda|\|x\|_{1} .
\end{array}
$$

- Triangle inequality:

$$
\begin{aligned}
\|x+y\|_{1} & =\sum_{k=1}^{n}\left|x_{k}+y_{k}\right| \\
& \leq \sum_{k=1}^{n}\left(\left|x_{k}\right|+\left|y_{k}\right|\right) \quad \text { (since the absolute value satisfies the triangle inequality) } \\
& =\sum_{k=1}^{n}\left|x_{k}\right|+\sum_{k=1}^{n}\left|y_{k}\right| \\
& =\|x\|_{1}+\|y\|_{1} .
\end{aligned}
$$

3. Let V be an inner product space with inner product (\cdot, \cdot) and let $S \subseteq V$. The orthogonal complement of S is defined as

$$
S^{\perp}=\{v \in V \mid(s, v)=0 \quad \forall s \in S\} .
$$

Let U be a finite dimensional subspace of V.
(a) Show that U^{\perp} is a subspace of V.

Solution: We need to prove the three subspace axioms:

- U^{\perp} contains 0: Recall that $(u, 0)=0$ for any $u \in V$. Then $(u, 0)=0$ for any $u \in U$, so $0 \in U^{\perp}$.
- U^{\perp} is closed under addition: Let $v, w \in U^{\perp}$. Then for any $u \in U$ we have

$$
\begin{aligned}
(u, v+w) & =(u, v)+(u, w) \\
& =0+0 \quad\left(\text { since } u \in U \text { and } v, w \in U^{\perp}\right) \\
& =0 .
\end{aligned}
$$

Therefore $v+w \in U^{\perp}$.

- U^{\perp} is closed under scalar multiplication: Let $v \in U^{\perp}$ and let λ be a scalar.

Then for any $u \in U$ we have

$$
\begin{aligned}
(u, \lambda v) & =\bar{\lambda}(u, v) & & \text { (conjugate linearity in the second component) } \\
& =\bar{\lambda}(0) & & \left(\text { since } u \in U \text { and } v \in U^{\perp}\right) \\
& =0 . & &
\end{aligned}
$$

Therefore $\lambda v \in U^{\perp}$.
Note that we did not need to use the fact that U is finite-dimensional.
(b) Show that $U \oplus U^{\perp}=V$.

Solution: We first want to show that $V=U+U^{\perp}$. Since U and U^{\perp} are subsets of V, we have that $U+U^{\perp} \subseteq V$. We now need to show $V \subseteq U+U^{\perp}$.
Let $\mathcal{B}=\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis for U. That is, \mathcal{B} is a basis for U in which

- $\left(e_{j}, e_{k}\right)=0$ whenever $j \neq k$,
- $\left\|e_{k}\right\|=1$ for $k=1, \ldots, n$.

Such a basis exists by the Gram-Schmidt process. Now define the map $P: V \rightarrow V$ by

$$
P(v)=\sum_{k=1}^{n}\left(v, e_{k}\right) e_{k} .
$$

Let v be an arbitrary element of V. Then

$$
v=P(v)+(v-P(v)) .
$$

Notice that $P(v)$ is always an element of U, since it is a linear combination of the elements in the basis \mathcal{B} for U. To prove that $v \in U+U^{\perp}$, we want to show that $(v-P(v)) \in U^{\perp}$.

Consider an arbitrary element e_{j} of the basis \mathcal{B} for U. We then have

$$
\begin{array}{rlrl}
\left(e_{j}, v-P(v)\right) & =\left(e_{j}, v\right)-\left(e_{j}, P(v)\right) & \\
& =\left(e_{j}, v\right)-\left(e_{j}, \sum_{k=1}^{n}\left(v, e_{k}\right) e_{k}\right) & \\
& =\left(e_{j}, v\right)-\sum_{k=1}^{n} \overline{\left(v, e_{k}\right)}\left(e_{j}, e_{k}\right) & & \binom{\text { conjugate linearity in }}{\text { the second component }} \\
& =\left(e_{j}, v\right)-\overline{\left(v, e_{j}\right)}\left(e_{j}, e_{j}\right) & & \text { (since } \left.\left(e_{j}, e_{k}\right)=0 \text { whenever } j \neq k\right) \\
& =\left(e_{j}, v\right)-\overline{\left(v, e_{j}\right)\left\|e_{j}\right\|^{2}} & & \\
& =\left(e_{j}, v\right)-\left(e_{j}, v\right)\left\|e_{j}\right\|^{2} & & \\
& =\left(e_{j}, v\right)-\left(e_{j}, v\right) & & \\
& =0 . & \text { since } \left.\left\|e_{j}\right\|=1\right)
\end{array}
$$

Now any element $u \in U$ can be written as a linear combination of elements in \mathcal{B}, so

$$
u=\sum_{k=1}^{n} \alpha_{k} e_{k}, \quad \text { where } \alpha_{1}, \ldots, \alpha_{n} \text { are scalars. }
$$

Then

$$
\begin{aligned}
(u, v-P(v)) & =\left(\sum_{k=1}^{n} \alpha_{k} e_{k}, v-P(v)\right) \\
& =\sum_{k=1}^{n} \alpha_{k}\left(e_{k}, v-P(v)\right) \\
& =\sum_{k=1}^{n} \alpha_{k}(0) \\
& =0
\end{aligned}
$$

so $(v-P(v)) \in U^{\perp}$. Therefore

$$
u=P(v)+(v-P(v)) \in U+U^{\perp}
$$

so $V \subseteq U+U^{\perp}$ and hence $V=U+U^{\perp}$.
We now want to show that this sum is direct. That is, we want to prove $U \cap U^{\perp}=\{0\}$. Let $v \in U \cap U^{\perp}$. Since $v \in U^{\perp}$ we have

$$
(u, v)=0 \quad \text { for all } u \in U .
$$

Since v is also in U, we can set $u=v$ to get

$$
(v, v)=0 .
$$

By definiteness of the inner product, we must have $v=0$. Since v was an arbitrary element of $U \cap U^{\perp}$, we get $U \cap U^{\perp}=\{0\}$ and hence $U \oplus U^{\perp}=V$.
(c) Show that $\left(U^{\perp}\right)^{\perp}=U$.

Solution: First, we want to show that $U \subseteq\left(U^{\perp}\right)^{\perp}$. Let $v \in U$. Then for every $w \in U^{\perp}$ we have

$$
\begin{array}{rlr}
(w, v) & =\overline{(v, w)} \\
& =\overline{0} & \\
& =0 . & \text { since } v \in U \text { and } w \in U^{\perp} \\
\end{array}
$$

Therefore $v \in\left(U^{\perp}\right)^{\perp}$, so $U \subseteq\left(U^{\perp}\right)^{\perp}$.
We now want to show that $\left(U^{\perp}\right)^{\perp} \subseteq U$. Let $v \in\left(U^{\perp}\right)^{\perp}$. Since $v \in V$ it can be written as

$$
v=u+w \quad u \in U, w \in U^{\perp}
$$

by problem 2(b). We want to show that $w=0$, so that $v=u \in U$. Notice that since $w \in U^{\perp}$ and $v \in\left(U^{\perp}\right)^{\perp}$ we get

$$
(v, w)=\overline{(w, v)}=\overline{0}=0 .
$$

Then

$$
\begin{aligned}
0 & =(v, w) \\
& =(u+w, w) \\
& \left.=(u, w)+(w, w) \quad \quad \text { (since } u \in U \text { and } w \in U^{\perp}\right) \\
& =0+(w, w) \quad \\
& =(w, w),
\end{aligned}
$$

so $w=0$ by the definiteness of the inner product. Therefore $v=u \in U$, so $\left(U^{\perp}\right)^{\perp} \subseteq U$ and hence $\left(U^{\perp}\right)^{\perp}=U$.
4. Let V be an inner product space over \mathbb{C} with an orthonormal basis $\mathcal{B}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Show that if $x=\sum_{k=1}^{n} \alpha_{k} v_{k}$ and $y=\sum_{k=1}^{n} \beta_{k} v_{k}$ where $\alpha_{k}, \beta_{k} \in \mathbb{C}$ for $k=1,2, \ldots, n$ then

$$
(x, y)=\sum_{k=1}^{n} \alpha_{k} \overline{\beta_{k}}
$$

Solution: Recall that to be orthonormal, the elements of \mathcal{B} must satisfy

- $\left(v_{j}, v_{k}\right)=0$ whenever $j \neq k$,
- $\left\|v_{k}\right\|=1$ for $k=1, \ldots, n$.

Now

$$
\begin{aligned}
(x, y) & =\left(\sum_{j=1}^{n} \alpha_{j} v_{j}, \sum_{k=1}^{n} \beta_{k} v_{k}\right) \\
& =\sum_{j=1}^{n} \alpha_{j}\left(v_{j}, \sum_{k=1}^{n} \beta_{k} v_{k}\right) \quad \text { (linearity in the first component) } \\
& =\sum_{j=1}^{n} \alpha_{j} \sum_{k=1}^{n} \overline{\beta_{k}}\left(v_{j}, v_{k}\right) \quad \text { (conjugate linearity in the second component) } \\
& =\sum_{j=1}^{n} \sum_{k=1}^{n} \alpha_{j} \overline{\beta_{k}}\left(v_{j}, v_{k}\right) \\
& =\sum_{j=1}^{n} \sum_{k=1}^{n} \alpha_{j} \overline{\beta_{k}}\left(v_{j}, v_{k}\right) \\
& \left.=\sum_{k=1}^{n} \alpha_{k} \overline{\beta_{k}}\left(v_{k}, v_{k}\right) \quad \quad \text { (since }\left(v_{j}, v_{k}\right)=0 \text { whenever } j \neq k\right) \\
& =\sum_{k=1}^{n} \alpha_{k} \overline{\beta_{k}}\left\|v_{k}\right\|^{2} \\
& =\sum_{k=1}^{n} \alpha_{k} \overline{\beta_{k}} .
\end{aligned}
$$

5. Let $P_{n}(\mathbb{R})$ (where $n \geq 3$) be equipped with the inner product

$$
(f(x), g(x))=\int_{0}^{1} f(x) g(x) d x
$$

Find $\left\|x^{2}-p\right\|$ (using the norm induced by the inner product).
Solution: First recall that the projection of f onto g is defined as

$$
\operatorname{proj}_{g}(f)=\frac{(f, g)}{(g, g)} g
$$

First we need to calculate p. To do this we need to calculate two inner products:

$$
\begin{aligned}
& \left(x^{2}, x\right)=\int_{0}^{1}\left(x^{2}\right)(x) d x=\int_{0}^{1} x^{3} d x=\left.\frac{1}{4} x^{4}\right|_{0} ^{1}=\frac{1}{4}(1)^{4}-\frac{1}{4}(0)^{4}=\frac{1}{4} \\
& (x, x)=\int_{0}^{1}(x)(x) d x=\int_{0}^{1} x^{2} d x=\left.\frac{1}{3} x^{3}\right|_{0} ^{1}=\frac{1}{3}(1)^{3}-\frac{1}{3}(0)^{3}=\frac{1}{3}
\end{aligned}
$$

We can now calculate p :

$$
p=\operatorname{proj}_{x}\left(x^{2}\right)=\frac{\left(x^{2}, x\right)}{(x, x)} x=\frac{\frac{1}{4}}{\frac{1}{3}} x=\frac{3}{4} x .
$$

Now we want to calculate $\left\|x^{2}-p\right\|$. Recall that the norm associated to the inner product is defined by $\|f\|=\sqrt{(f, f)}$. Therefore

$$
\begin{aligned}
\left(x^{2}-p, x^{2}-p\right) & =\left(x^{2}-\frac{3}{4} x, x^{2}-\frac{3}{4} x\right) \\
& =\int_{0}^{1}\left(x^{2}-\frac{3}{4} x\right)\left(x^{2}-\frac{3}{4} x\right) d x \\
& =\int_{0}^{1} x^{4}-\frac{3}{2} x^{3}+\frac{9}{16} x^{2} d x \\
& =\left.\left(\frac{1}{5} x^{5}-\frac{3}{8} x^{4}+\frac{3}{16} x^{2}\right)\right|_{0} ^{1} \\
& =\left(\frac{1}{5}-\frac{3}{8}+\frac{3}{16}\right)-(0) \\
& =\frac{1}{80},
\end{aligned}
$$

SO

$$
\left\|x^{2}-p\right\|=\sqrt{\left(x^{2}-p, x^{2}-p\right)}=\sqrt{\frac{1}{80}}=\frac{1}{\sqrt{80}}=\frac{1}{4 \sqrt{5}} .
$$

