Homework 6

Due 02/28/2020
In the following problems, make sure to write your arguments coherently in full sentences. Start a sentence with words rather than a formula. Use words to transition your ideas, for example "This leads to", "Therefore", "We want to show", etc.

1. Let V be an inner product space and let $\|\cdot\|$ be the norm associated with the inner product on V, i.e. given by $\|v\|=\sqrt{(v, v)}$. Show that
(a) (Parallelogram identity)

$$
\|u+v\|^{2}+\|u-v\|^{2}=2\left(\|u\|^{2}+\|v\|^{2}\right) \quad \forall u, v \in V .
$$

(b) (Cauchy-Schwarz inequality)

$$
|(u, v)| \leq\|u\|\|v\| \quad \forall u, v \in V
$$

Note: for Part (b), you only need to show proof for the case $F=\mathbb{R}$ or \mathbb{Q}. Use the fact that $(t u+v, t u+v) \geq 0$ for all $t \in \mathbb{R}$. If you can do the case $F=\mathbb{C}$, you will be granted 3 extra points.
2. On \mathbb{R}^{n}, let us consider an operator $\|\cdot\|$ given by $\|x\|=\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{n}\right|$ where

$$
x=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

Show that $\|\cdot\|$ is a norm on \mathbb{R}^{n}. (This is known as a "taxicab" norm.)
3. Let V be an inner product space. For each subset $S \subset V$, the orthogonal complement of S is denoted by $S^{\perp}=\{v \in V: v \perp w$ for all $w \in S\}$. Let U be a subspace of V. Show the following statements:
(a) U^{\perp} is a subspace of V.
(b) $U \oplus U^{\perp}=V$.
(c) $\left(U^{\perp}\right)^{\perp}=U$.
4. Let V be an inner product space over \mathbb{C} with an orthonormal basis $\mathcal{B}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let $x=\sum_{k=1}^{n} \alpha_{k} v_{k}$ and $y=\sum_{k=1}^{n} \beta_{k} v_{k}$ where $\alpha_{k}, \beta_{k} \in \mathbb{C}$ for $k=1,2, \ldots, n$. Show that

$$
(x, y)=\sum_{k=1}^{n} \alpha_{k} \bar{\beta}_{k}
$$

Do the following problem for 6 bonus points.
5. On $P_{n}(\mathbb{R})$, which is the space of polynomials of real coefficients with degree $\leq n$, let us consider the inner product

$$
(f, g)=\int_{0}^{1} f(x) g(x) d x
$$

Let p be the orthogonal projection of x^{2} on the line $\operatorname{span}\{x\}$. Determine $\left\|x^{2}-p\right\|$.

