Homework 6

Due 02/28/2020

In the following problems, make sure to write your arguments coherently in full sentences. Start a sentence with words rather than a formula. Use words to transition your ideas, for example "This leads to", "Therefore", "We want to show", etc.

- 1. Let V be an inner product space and let $\|\cdot\|$ be the norm associated with the inner product on V, i.e. given by $||v|| = \sqrt{(v, v)}$. Show that
 - (a) (Parallelogram identity)

$$||u+v||^2 + ||u-v||^2 = 2(||u||^2 + ||v||^2) \quad \forall u, v \in V.$$

(b) (Cauchy-Schwarz inequality)

$$|(u,v)| \le ||u|| ||v|| \quad \forall u,v \in V.$$

Note: for Part (b), you only need to show proof for the case $F = \mathbb{R}$ or \mathbb{Q} . Use the fact that $(tu + v, tu + v) \ge 0$ for all $t \in \mathbb{R}$. If you can do the case $F = \mathbb{C}$, you will be granted 3 extra points.

2. On \mathbb{R}^n , let us consider an operator $\|\cdot\|$ given by $\|x\| = |x_1| + |x_2| + \ldots + |x_n|$ where

$$x = \left[\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right]$$

Show that $\|\cdot\|$ is a norm on \mathbb{R}^n . (This is known as a "taxicab" norm.)

- 3. Let V be an inner product space. For each subset $S \subset V$, the orthogonal complement of S is denoted by $S^{\perp} = \{v \in V : v \perp w \text{ for all } w \in S\}$. Let U be a subspace of V. Show the following statements:
 - (a) U^{\perp} is a subspace of V.
 - (b) $U \oplus U^{\perp} = V$.
 - (c) $(U^{\perp})^{\perp} = U.$
- 4. Let V be an inner product space over \mathbb{C} with an orthonormal basis $\mathcal{B} = \{v_1, v_2, ..., v_n\}$. Let $x = \sum_{k=1}^{n} \alpha_k v_k$ and $y = \sum_{k=1}^{n} \beta_k v_k$ where $\alpha_k, \beta_k \in \mathbb{C}$ for k = 1, 2, ..., n. Show that

$$(x,y) = \sum_{k=1}^{n} \alpha_k \bar{\beta}_k$$

Do the following problem for 6 bonus points.

5. On $P_n(\mathbb{R})$, which is the space of polynomials of real coefficients with degree $\leq n$, let us consider the inner product

$$(f,g) = \int_0^1 f(x)g(x)dx.$$

Let p be the orthogonal projection of x^2 on the line span $\{x\}$. Determine $||x^2 - p||$.