Homework 7
 Answer Key

Assume the inner products on \mathbb{R}^{n} and $M_{m \times n}(\mathbb{R})$ are respectively:

$$
\begin{aligned}
& \qquad \begin{array}{l}
(x, y)=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}=\sum_{j=1}^{n} x_{j} y_{j} \\
\qquad(A, B)=a_{11} b_{11}+a_{12} b_{12}+\ldots+a_{m n} b_{m n}=\sum_{j=1}^{m} \sum_{k=1}^{n} a_{j k} b_{j k} . \\
\text { 1. Consider the vector space } E=\left\{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \in \mathbb{R}^{4}: x_{2}=x_{1}+x_{3}+x_{4}\right\} .
\end{array} \text {. }
\end{aligned}
$$

(a) Find an orthonormal basis of E.

Solution: First we want to find a basis for E that is not necessarily orthonormal. We can rewrite E as

$$
\begin{aligned}
E & =\left\{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \in \mathbb{R}^{4}: x_{2}=x_{1}+x_{3}+x_{4}\right\} \\
& =\left\{\left[\begin{array}{c}
x_{1} \\
x_{1}+x_{3}+x_{4} \\
x_{3} \\
x_{4}
\end{array}\right]: x_{1}, x_{3}, x_{4} \in \mathbb{R}\right\} \\
& =\left\{x_{1}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right]: x_{1}, x_{3}, x_{4} \in \mathbb{R}\right\} \\
& =\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

It is easy to check that these three vectors are linearly independent, so

$$
\left\{w_{1}, w_{2}, w_{3}\right\}=\left\{\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right]\right\}
$$

is a basis for E. We now apply the Gram-Schmidt process to find an orthogonal (not necessarily orthonormal) basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ for E :

$$
\begin{aligned}
& v_{1}=w_{1} \\
& v_{2}=w_{2}-\operatorname{proj}_{v_{1}}\left(w_{2}\right) \\
& v_{3}=w_{3}-\operatorname{proj}_{v_{1}}\left(w_{3}\right)-\operatorname{proj}_{v_{2}}\left(w_{3}\right) .
\end{aligned}
$$

To make our calculations a bit easier, we will scale v_{1}, v_{2}, and v_{3} so that they do not contain fractions. Notice that scaling the vectors does not change whether they are orthogonal.

Calculate v_{2} :

$$
\begin{aligned}
v_{2} & =w_{2}-\operatorname{proj}_{v_{1}}\left(w_{2}\right) \\
& =w_{2}-\frac{\left(w_{2}, v_{1}\right)}{\left(v_{1}, v_{1}\right)} v_{1} \\
& =w_{2}-\frac{1}{2} v_{1} \\
& =\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{1}{2} \\
\frac{1}{2} \\
1 \\
0
\end{array}\right]
\end{aligned}
$$

Since v_{2} contains fractions, we will scale it by a factor of 2 . Multiply v_{2} by 2 . The new v_{2} is given by

$$
v_{2}=\left[\begin{array}{c}
-1 \\
1 \\
2 \\
0
\end{array}\right]
$$

Now calculate v_{3} :

$$
\begin{aligned}
v_{3} & =w_{3}-\operatorname{proj}_{v_{1}}\left(w_{3}\right)-\operatorname{proj}_{v_{2}}\left(w_{3}\right) \\
& =w_{3}-\frac{\left(w_{3}, v_{1}\right)}{\left(v_{1}, v_{1}\right)} v_{1}-\frac{\left(w_{3}, v_{2}\right)}{\left(v_{2}, v_{2}\right)} v_{2} \\
& =w_{3}-\frac{1}{2} v_{1}-\frac{1}{2} v_{2} \\
& =\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]-\frac{1}{6}\left[\begin{array}{c}
-1 \\
1 \\
2 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{1}{3} \\
\frac{1}{3} \\
-\frac{1}{3} \\
1
\end{array}\right]
\end{aligned}
$$

Multiplying by 3 gives the new v_{3} :

$$
v_{3}=\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
3
\end{array}\right]
$$

Therefore

$$
\left.\left\{v_{1}, v_{2}, v_{3}\right\}=\left\{\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
3
\end{array}\right]\right\}
$$

is an orthogonal basis for E.

To find an orthonormal basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ for E, we need to divide each of the vectors in our orthogonal basis by its norm:

$$
\begin{aligned}
& e_{1}=\frac{1}{\left\|v_{1}\right\|} v_{1}=\frac{1}{\sqrt{\left(v_{1}, v_{1}\right)}} v_{1}=\frac{1}{\sqrt{2}} v_{1}=\frac{\sqrt{2}}{2} v_{1}=\frac{\sqrt{2}}{2}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right] \\
& e_{2}=\frac{1}{\left\|v_{2}\right\|} v_{2}=\frac{1}{\sqrt{\left(v_{2}, v_{2}\right)}} v_{2}=\frac{1}{\sqrt{6}} v_{2}=\frac{\sqrt{6}}{6} v_{2}=\frac{\sqrt{6}}{6}\left[\begin{array}{c}
-1 \\
1 \\
2 \\
0
\end{array}\right] \\
& e_{3}=\frac{1}{\left\|v_{3}\right\|} v_{3}=\frac{1}{\sqrt{\left(v_{3}, v_{3}\right)}} v_{3}=\frac{1}{\sqrt{12}} v_{3}=\frac{\sqrt{3}}{6} v_{3}=\frac{\sqrt{3}}{6}\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
3
\end{array}\right] .
\end{aligned}
$$

Therefore

$$
\left\{e_{1}, e_{2}, e_{3}\right\}=\left\{\frac{\sqrt{2}}{2}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], \frac{\sqrt{6}}{6}\left[\begin{array}{c}
-1 \\
1 \\
2 \\
0
\end{array}\right], \frac{\sqrt{3}}{6}\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
3
\end{array}\right]\right\}
$$

is an orthonormal basis for E.
(b) Find the projection of vector $u=\left[\begin{array}{c}1 \\ 0 \\ -1 \\ 2\end{array}\right]$ on E.

Solution: We will use the orthogonal basis

$$
\left.\left\{v_{1}, v_{2}, v_{3}\right\}=\left\{\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
3
\end{array}\right]\right\}
$$

for E that we found in part (a). The projection of u onto E is

$$
\begin{aligned}
\operatorname{proj}_{E}(u) & =\operatorname{proj}_{v_{1}}(u)+\operatorname{proj}_{v_{2}}(u)+\operatorname{proj}_{v_{3}}(u) \\
& =\frac{\left(u, v_{1}\right)}{v_{1}, v_{1}} v_{1}+\frac{\left(u, v_{2}\right)}{v_{2}, v_{2}} v_{2}+\frac{\left(u, v_{3}\right)}{v_{3}, v_{3}} v_{3} \\
& =\frac{1}{2} v_{1}+\frac{-3}{6} v_{2}+\frac{6}{12} v_{3} \\
& =\frac{1}{2}\left(v_{1}-v_{2}+v_{3}\right) \\
& =\frac{1}{2}\left(\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]-\left[\begin{array}{c}
-1 \\
1 \\
2 \\
0
\end{array}\right]+\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
3
\end{array}\right]\right) \\
& =\frac{1}{2}\left[\begin{array}{c}
1 \\
1 \\
-3 \\
3
\end{array}\right]
\end{aligned}
$$

2. Let $C=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. Consider the vector space $E=\left\{A \in M_{2 \times 2}(\mathbb{R}): A C=C A\right\}$.

Find the projection of the vector $u=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ onto E.
Solution: Let

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

then

$$
A C=\left[\begin{array}{ll}
b & a \\
d & c
\end{array}\right] \quad \text { and } \quad C A=\left[\begin{array}{ll}
c & d \\
a & b
\end{array}\right],
$$

so $A C=C A$ implies $b=c$ and $a=d$. We can then write E as

$$
\begin{aligned}
E & =\left\{A \in M_{2 \times 2}(\mathbb{R}): A C=C A\right\} \\
& =\left\{\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right]: a, b \in \mathbb{R}\right\} \\
& =\left\{a\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+b\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]: a, b \in \mathbb{R}\right\} \\
& =\operatorname{span}\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\right\} .
\end{aligned}
$$

Since neither of these vectors is a scalar multiple of the other, this set is linearly independent, so

$$
\left\{V_{1}, V_{2}\right\}=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\right\}
$$

is a basis for E. The next step would be to find an orthogonal basis for E using the GramSchmidt process. However, notice that V_{1} and V_{2} are already orthogonal:

$$
\left(V_{1}, V_{2}\right)=(1)(0)+(0)(1)+(0)(1)+(1)(0)=0 .
$$

Therefore $\left\{V_{1}, V_{2}\right\}$ is an orthogonal basis for E. We can now calculate the projection of u onto E :

$$
\begin{aligned}
\operatorname{proj}_{E}(u) & =\operatorname{proj}_{V_{1}}(u)+\operatorname{proj}_{V_{2}}(u) \\
& =\frac{\left(u, V_{1}\right)}{\left(V_{1}, V_{1}\right)} V_{1}+\frac{\left(u, V_{2}\right)}{\left(V_{2}, V_{2}\right)} V_{2} \\
& =\frac{5}{2} V_{1}+\frac{5}{2} V_{2} \\
& =\frac{5}{2}\left(V_{1}+V_{2}\right) \\
& =\frac{5}{2}\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\right) \\
& =\frac{5}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] .
\end{aligned}
$$

3. Let $V=\{u:[0,1] \rightarrow \mathbb{R}, u$ is continuous $\}$ equipped with the inner product given by

$$
(u, v)=\int_{0}^{1} u(x) v(x) d x
$$

Find the polynomial in $P_{3}(\mathbb{R})$ that is closest to vector $f(x)=e^{x}$. In other words, find a polynomial P of degree ≤ 3 such that $\|P-f\|$ is minimized.
Solution: There are many inner product calculations that need to be performed for this problem. We will omit these calculations.
We want to find the projection of the vector f onto $P_{3}(\mathbb{R})$. To do this, we first need an orthogonal basis for $P_{3}(\mathbb{R})$. Start with the ordinary basis

$$
\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}=\left\{1, x, x^{2}, x^{3}\right\}
$$

for $P_{3}(\mathbb{R})$. Now apply the Gram-schmidt process to find an orthogonal basis. Let $v_{1}=w_{1}=1$. We now calculate v_{2} :

$$
\begin{aligned}
v_{2} & =w_{2}-\operatorname{proj}_{v_{1}}\left(w_{1}\right) \\
& =x-\frac{(x, 1)}{(1,1)} 1 \\
& =x-\frac{1}{2} .
\end{aligned}
$$

Future calculations will be easier without fractions, so we will redefine v_{2} by multiply by 2 :

$$
v_{2}=2 x-1 .
$$

Continuing with the Gram-Schmidt process and rescaling to get rid of fractions gives the basis $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ for $P_{3}(\mathbb{R})$, where

$$
\begin{aligned}
& v_{1}=1 \\
& v_{2}=2 x-1 \\
& v_{3}=6 x^{2}-6 x+1 \\
& v_{4}=20 x^{3}-30 x^{2}+12 x-1 .
\end{aligned}
$$

Now we can use this orthogonal basis to find $\operatorname{proj}_{P_{3}(\mathbb{R})}(g)$:

$$
\begin{aligned}
\operatorname{proj}_{P_{3}(\mathbb{R})}(g)= & \operatorname{proj}_{v_{1}}(g)+\operatorname{proj}_{v_{2}}(g)+\operatorname{proj}_{v_{3}}(g)+\operatorname{proj}_{v_{4}}(g) \\
= & \frac{\left(g, v_{1}\right)}{\left(v_{1}, v_{1}\right)} v_{1}+\frac{\left(g, v_{2}\right)}{\left(v_{2}, v_{2}\right)} v_{2}+\frac{\left(g, v_{3}\right)}{\left(v_{3}, v_{3}\right)} v_{3}+\frac{\left(g, v_{4}\right)}{\left(v_{4}, v_{4}\right)} v_{4} \\
= & \frac{e-1}{1}(1)+\frac{3-e}{\frac{1}{3}}(2 x-1)+\frac{7 e-19}{\frac{1}{5}}\left(6 x^{2}-6 x+1\right) \\
& \quad+\frac{193-71 e}{\frac{1}{7}}\left(20 x^{3}-30 x^{2}+12 x-1\right) \\
= & (27020-9940 e) x^{3}+(-41100+15120 e) x^{2}+(16800-6180 e) x+(-1456+536 e) \\
\approx & 0.2786 x^{3}+0.4212 x^{2}+1.0183 x+0.9991 .
\end{aligned}
$$

4. Let $A=\left[\begin{array}{rr}1 & 2 \\ 0 & 1 \\ 2 & 1 \\ 2 & -1\end{array}\right], \quad b=\left[\begin{array}{r}1 \\ -1 \\ 0 \\ 3\end{array}\right]$.
(a) Show that the equation $A x=b$ has no solutions $x \in \mathbb{R}^{2}$.

Solution: Applying row reduction to the augmented system $A x=b$ gives

$$
\left[\begin{array}{rr|r}
1 & 2 & 1 \\
0 & 1 & -1 \\
2 & 1 & 0 \\
2 & -1 & 3
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ll|l}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] .
$$

The third line from the reduced matrix gives

$$
0 x_{1}+0 x_{2}=1
$$

which is impossible. Therefore $A x=b$ has no solutions.
(b) Although the equation has no solutions, one can attempt to find a least squares solution, $x \in \mathbb{R}^{2}$ that minimizes $\|A x-b\|$.
(b.1) Find the projection of b on the column space $\operatorname{col}(A)$ (which is the range of A if viewing A as a linear map from \mathbb{R}^{2} to \mathbb{R}^{4}). Call it \tilde{b}.
Solution: Since neither column of A is a scalar multiple of the other, the columns are linearly independent, so they form a basis $\left\{w_{1}, w_{2}\right\}$ for $\operatorname{col}(A)$:

$$
\left\{w_{1}, w_{2}\right\}=\left\{\left[\begin{array}{l}
1 \\
0 \\
2 \\
2
\end{array}\right],\left[\begin{array}{r}
2 \\
1 \\
1 \\
-1
\end{array}\right] .\right\}
$$

We can now use the Gram-Schmidt process to find an orthogonal basis $\left\{v_{1}, v_{2}\right\}$ for $\operatorname{col}(A)$. Let $v_{1}=w_{1}$. Then

$$
\begin{aligned}
v_{2} & =w_{2}-\operatorname{proj}_{v_{1}}\left(w_{2}\right) \\
& =w-2-\frac{\left(w_{2}, v_{1}\right)}{\left(v_{1}, v_{1}\right)} v_{1} \\
& =w_{2}-\frac{2}{9} v_{1} \\
& =\left[\begin{array}{r}
2 \\
1 \\
1 \\
-1
\end{array}\right]-\frac{2}{9}\left[\begin{array}{l}
1 \\
0 \\
2 \\
2
\end{array}\right] \\
& =\frac{1}{9}\left[\begin{array}{r}
18 \\
9 \\
9 \\
-9
\end{array}\right]-\frac{1}{9}\left[\begin{array}{l}
2 \\
0 \\
4 \\
4
\end{array}\right] \\
& =\frac{1}{9}\left[\begin{array}{r}
16 \\
9 \\
5 \\
-13
\end{array}\right] .
\end{aligned}
$$

To make future calculations easier, rescale v_{2} by a factor of 9 :

$$
v_{2}=\left[\begin{array}{r}
16 \\
9 \\
5 \\
-13
\end{array}\right] .
$$

Our orthogonal basis for $\operatorname{col}(A)$ is

$$
\left\{v_{1}, v_{2}\right\}=\left\{\left[\begin{array}{l}
1 \\
0 \\
2 \\
2
\end{array}\right],\left[\begin{array}{r}
16 \\
9 \\
5 \\
-13
\end{array}\right]\right\} .
$$

We can now calculate the projection of b onto $\operatorname{col}(A)$:

$$
\begin{aligned}
\tilde{b} & =\operatorname{proj}_{\operatorname{col}(A)}(b) \\
& =\operatorname{proj}_{v_{1}}(b)+\operatorname{proj}_{v_{2}}(b) \\
& =\frac{\left(b, v_{1}\right)}{\left(v_{1}, v_{1}\right)} v_{1}+\frac{\left(b, v_{2}\right)}{\left(v_{2}, v_{2}\right)} v_{2} \\
& =\frac{7}{9} v_{1}+\frac{-32}{531} v_{2} \\
& =\frac{7}{9}\left[\begin{array}{l}
1 \\
0 \\
2 \\
2
\end{array}\right]-\frac{32}{531}\left[\begin{array}{r}
16 \\
9 \\
5 \\
-13
\end{array}\right] \\
& =\frac{1}{59}\left[\begin{array}{r}
-11 \\
-32 \\
74 \\
138
\end{array}\right] .
\end{aligned}
$$

(b.2) Solve for the exact solution of $A x=\tilde{b}$.

Solution: We can solve this equation by applying row reduction to the equivalent augmented system:

$$
\left[\begin{array}{rr|r}
1 & 2 & -\frac{11}{59} \\
0 & 1 & -\frac{32}{59} \\
2 & 1 & \frac{74}{59} \\
2 & -1 & \frac{138}{59}
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{rr|r}
1 & 0 & \frac{53}{59} \\
0 & 1 & -\frac{32}{59} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

Therefore

$$
x=\left[\begin{array}{r}
53 \\
59 \\
-\frac{32}{59}
\end{array}\right] .
$$

5. Consider $V=M_{3 \times 3}(\mathbb{R})$. Find an orthogonal basis for the subspace

$$
U=\operatorname{span}\left\{\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]\right\} .
$$

Solution: First, let

$$
\left\{W_{1}, W_{2}, W_{3}\right\}=\left\{\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]\right\}
$$

We will use the Gram-Schmidt process to find an orthogonal basis $\left\{V_{1}, V_{2}, V_{3}\right\}$:

$$
\begin{aligned}
& V_{1}=W_{1} \\
& V_{2}=W_{2}-\operatorname{proj}_{V_{1}}\left(W_{2}\right) \\
& V_{3}=W_{3}-\operatorname{proj}_{V_{1}}\left(W_{3}\right)-\operatorname{proj}_{V_{2}}\left(W_{3}\right) .
\end{aligned}
$$

To calculate V_{2} we will first need to calculate two inner products:

$$
\begin{aligned}
\left(W_{2}, V_{1}\right)= & (1)(1)+(1)(0)+(0)(1) & \left(W_{2}, V_{1}\right)= & (1)(1)+(1)(1)+(0)(0) \\
& +(0)(0)+(1)(1)+(0)(0) & & (0)(0)+(1)(1)+(0)(0) \\
& +(0)(0)+(0)(0)+(1)(1) & & +(0)(0)+(0)(0)+(1)(1) \\
= & 3 & = & 4
\end{aligned}
$$

We can now calculate V_{2} :

$$
\begin{aligned}
V_{2} & =W_{2}-\operatorname{proj}_{V_{1}}\left(W_{2}\right) \\
& =W_{2}-\frac{\left(W_{2}, V_{1}\right)}{\left(V_{1}, V_{1}\right)} V_{1} \\
& =\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-\frac{3}{4}\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\frac{1}{4}\left[\begin{array}{rrr}
1 & -3 & 4 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

To make future calculations easier, we will rescale V_{2} by multiplying by 4 . The new V_{2} is

$$
V_{2}=\left[\begin{array}{rrr}
1 & -3 & 4 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Now calculate V_{3} :

$$
\begin{aligned}
V_{3} & =W_{3}-\operatorname{proj}_{V_{1}}\left(W_{3}\right)-\operatorname{proj}_{V_{2}}\left(W_{3}\right) \\
& =W_{3}-\frac{\left(W_{3}, V_{1}\right)}{\left(V_{1}, V_{1}\right)} V_{1}-\frac{\left(W_{3}, V_{2}\right)}{\left(V_{2}, V_{2}\right)} V_{2} \\
& =W_{3}-\frac{3}{4} V_{1}-\frac{3}{28} V_{2} \\
& =\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]-\frac{3}{4}\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-\frac{3}{28}\left[\begin{array}{rrr}
1 & -3 & 4 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\frac{1}{7}\left[\begin{array}{rrr}
1 & -3 & -3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

Although we have no more calculations to perform, our answer might look a bit nicer if we rescale V_{3} as well. Multiply V_{3} by 7 to get the new V_{3} :

$$
V_{3}=\left[\begin{array}{rrr}
1 & -3 & -3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Therefore an orthogonal basis for U is

$$
\left\{V_{1}, V_{2}, V_{3}\right\}=\left\{\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{rrr}
1 & -3 & 4 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{rrr}
1 & -3 & -3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right\} .
$$

