Homework 8
 Answer Key

1. Find a least squares solution to the inconsistent system $A \mathbf{x}=\mathbf{b}$ where
(a) $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}3 \\ 5 \\ 8\end{array}\right]$.

Solution: To find a least squares solution, we need to solve the equation $A^{*} A \mathbf{x}=A^{*} \mathbf{b}$.
In this case,

$$
A^{*}=\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right],
$$

so

$$
A^{*} A=\left[\begin{array}{cc}
35 & 44 \\
44 & 56
\end{array}\right] \quad \text { and } \quad A^{*} \mathbf{b}=\left[\begin{array}{c}
58 \\
74
\end{array}\right] .
$$

We can solve for \mathbf{x} by applying row recuction to the augmented system:

$$
\left[\begin{array}{ll|l}
35 & 44 & 58 \\
44 & 56 & 74
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ll|r}
1 & 0 & -\frac{1}{3} \\
0 & 1 & \frac{9}{12}
\end{array}\right] .
$$

Therefore

$$
\mathbf{x}=\left[\begin{array}{c}
-\frac{1}{3} \\
\frac{19}{12}
\end{array}\right]
$$

is the least squares solution to the system.
(b) $A=\left[\begin{array}{cc}i & 1 \\ 2 & -2 i\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}i+1 \\ 1\end{array}\right]$.

Solution: We again need to solve the equation $A^{*} A \mathbf{x}=A^{*} \mathbf{b}$. In this case,

$$
A^{*}=\left[\begin{array}{cc}
-i & 2 \\
1 & 2 i
\end{array}\right] \text {, }
$$

so

$$
A^{*} A=\left[\begin{array}{cc}
5 & -5 i \\
5 i & 5
\end{array}\right] \quad \text { and } \quad A^{*} \mathbf{b}=\left[\begin{array}{c}
3-i \\
1+3 i
\end{array}\right] .
$$

We can solve for \mathbf{x} by applying row recuction to the augmented system:

$$
\left[\begin{array}{cc|c}
5 & -5 i & 3-i \\
5 i & 5 & 1+3 i
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{rr|r}
1 & -i & \frac{3}{5}-\frac{1}{5} i \\
0 & 0 & 0
\end{array}\right] .
$$

Therefore

$$
x_{1}-i x_{2}=\frac{3}{5}-\frac{1}{5} i .
$$

Solving for x_{1} gives

$$
x_{1}=\frac{3}{5}-\frac{1}{5} i+i x_{2} .
$$

There are thus infinitely many least squares solutions. They can be written as

$$
\mathbf{x}=\left[\begin{array}{c}
\frac{3}{5}-\frac{1}{5} i+i x_{2} \\
x_{2}
\end{array}\right]
$$

where $x_{2} \in \mathbb{C}$.
2. Find a plane $z=a x+b y+c$ that best fits the five points $(1,1,1),(1,2,4),(2,0,1),(-1,2,7)$ and $(5,4,1)$. Is the answer unique?

Solution: We first need to set up a system $A \vec{x}=\vec{b}$ where We want to find a least squares solution

$$
\begin{gathered}
x_{1} a+y_{1} b+c=z_{1} \\
\vdots \\
x_{n} a+y_{n} b+c=z_{n}
\end{gathered}
$$

Notice that this system can be written as a matrix equation $A \vec{x}=\vec{b}$:

$$
\left[\begin{array}{ccc}
x_{1} & y_{1} & 1 \\
& \vdots & \\
x_{n} & y_{n} & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right] .
$$

In our case we have

$$
\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & 2 & 1 \\
2 & 0 & 1 \\
-1 & 2 & 1 \\
5 & 4 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
1 \\
4 \\
1 \\
7 \\
1
\end{array}\right]
$$

To find a least squares solution, we need to solve the system $A^{*} A \vec{x}=A^{*} \vec{b}$. First we find A^{*} :

$$
A^{*}=\left[\begin{array}{rrrrr}
1 & 1 & 2 & -1 & 5 \\
1 & 2 & 0 & 2 & 4 \\
1 & 1 & 1 & 1 & 1
\end{array}\right] .
$$

Now

$$
A^{*} A=\left[\begin{array}{ccc}
32 & 21 & 8 \\
21 & 25 & 9 \\
8 & 9 & 5
\end{array}\right] \quad \text { and } \quad A^{*} \vec{b}=\left[\begin{array}{c}
19 \\
-1 \\
0
\end{array}\right]
$$

We can now solve the system using row reduction:

$$
\left[\begin{array}{ccc|c}
32 & 21 & 8 & 19 \\
21 & 25 & 9 & -1 \\
8 & 9 & 5 & 0
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{lll|r}
1 & 0 & 0 & \frac{79}{57} \\
0 & 1 & 0 & -\frac{241}{209} \\
0 & 0 & 1 & -\frac{89}{627}
\end{array}\right] .
$$

This system therefore has a unique solution:

$$
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
\frac{79}{57} \\
-\frac{241}{209} \\
-\frac{89}{627}
\end{array}\right] .
$$

The equation for the plane of best fit is

$$
z=\frac{79}{57} x-\frac{241}{209} y-\frac{89}{627} .
$$

3. Let $A, B \in M_{n \times n}(\mathbb{C})$. Recall that A is unitary if $A^{-1}=A^{*}$. Show that if A, B are unitary then $A B$ is unitary.
Solution: Recall that for any matrices $A, B \in M_{n \times n}(\mathbb{C})$ we have

$$
(A B)^{-1}=B^{-1} A^{-1} \quad \text { and } \quad(A B)^{*}=B^{*} A^{*}
$$

Now if A, B are unitary, then

$$
\begin{aligned}
(A B)^{*} & =B^{*} A^{*} \\
& =B^{-1} A^{-1} \quad \text { since } A, B \text { are unitary } \\
& =(A B)^{-1} .
\end{aligned}
$$

Therefore $A B$ is unitary.
4. Let $A \in M_{m \times n}(\mathbb{C})$. Show that
(a) The eigenvalues of $A^{*} A$ are real and non-negative.

Solution: Let $(\cdot, \cdot)_{n}$ denote the standard inner product on \mathbb{C}^{n}. Recall that for any matrix $A \in \in M_{m \times n}$, the adjoint A^{*} satisfies

$$
\left(A^{*} x, y\right)_{m}=(x, A y)_{n}
$$

Let v be an eigenvector of $A^{*} A$ with associated eigenvalue λ. We will show separately that λ is real and that λ is non-negative.
(i) $\boldsymbol{\lambda}$ is real: Let $B=A^{*} A$. notice that

$$
B^{*}=\left(A^{*} A\right)^{*}=(A)^{*}\left(A^{*}\right)^{*}=A^{*} A=B,
$$

so B is self-adjoint. Then

$$
\begin{aligned}
\left(B^{*} v, v\right) & =(v, B v) \\
& \downarrow \\
(B v, v) & =(v, B v) \\
& \downarrow \\
(\lambda v, v) & =(v, \lambda v) \\
& \downarrow \\
\lambda(v, v) & =\bar{\lambda}(v, v) \\
& \downarrow \\
\lambda & =\bar{\lambda} .
\end{aligned}
$$

Notice that in the last step we divided by (v, v). We can do this, becuase know that (v, v) is nonzero, since v is an eigenvector (and hence v is nonzero). Since λ is equal to its own complex conjugate, it must be real.
(ii) $\boldsymbol{\lambda}$ is non-negative:

$$
\begin{aligned}
\left(A^{*} A v, v\right) & =\left(A v,\left(A^{*}\right)^{*} v\right) \\
& \downarrow \\
\left(A^{*} A v, v\right) & =(A v, A v) \\
& \downarrow \\
(\lambda v, v) & =(A v, A v) \\
& \downarrow \\
\lambda(v, v) & =(A v, A v) \\
& \downarrow \\
\lambda & =\frac{(A v, A v)}{(v, v)} .
\end{aligned}
$$

Since $(A v, A v) \geq 0$ and $(v, v)>0$ by positivity and definiteness of the inner product, we get

$$
\lambda=\frac{(A v, A v)}{(v, v)} \geq 0
$$

so λ is non-negative.
(b) $\operatorname{null}\left(A^{*} A+I_{n}\right)=\{0\}$.

Solution: Recall that the eigenvalues λ of $B \in M_{n \times n}(\mathbb{C})$ are the only values such that

$$
\operatorname{null}(B-\lambda I) \neq\{0\} .
$$

Since -1 is not an eigenvalue of $A^{*} A$. we must have

$$
\operatorname{null}\left(A^{*} A+I_{n}\right)=\operatorname{null}\left(A^{*} A-(-1) I_{n}\right)=\{0\} .
$$

(c) The matrix $A^{*} A+I_{n}$ is invertible.

Solution: Since $\operatorname{null}\left(A^{*} A+I_{n}\right)=\{0\}$ the map $A^{*} A: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is injective, and hence invertible. Therefore the matrix $A^{*} A$ is invertible.
5. Consider the real inner product space $V=\mathbb{P}_{2}(\mathbb{R})$ with inner product given by

$$
(f(x), g(x))=\int_{-1}^{1} f(x) g(x) d x .
$$

(a) Find an orthonormal basis of V.

Solution: Apply the Gram-Schmidt to the basis $\left\{1, x, x^{2}\right\}$ to find an orthogonal basis $\left\{w_{1}, w_{2} . w_{3}\right\}$:

$$
\begin{aligned}
w_{1} & =1 \\
w_{2} & =x-\operatorname{proj}_{w_{1}}(x) \\
& =x-\frac{(x, 1)}{(1,1)} \cdot 1 \\
& =x-\frac{0}{2} \cdot 1 \\
& =x . \\
w_{3} & =x^{2}-\operatorname{proj}_{w_{1}}\left(x^{2}\right)-\operatorname{proj}_{w_{2}}\left(x^{2}\right) \\
& =x^{2}-\frac{\left(x^{2}, 1\right)}{(1,1)} \cdot 1-\frac{\left(x^{2}, x\right)}{(x, x)} \cdot x \\
& =x^{2}-\frac{2}{3} \cdot 1-\frac{0}{1} \cdot x \\
& =x^{2}-\frac{2 / 3}{2} \cdot 1-\frac{0}{1} \cdot x \\
& =x^{2}-\frac{1}{3} .
\end{aligned}
$$

To make future calculations easier, we will rescale w_{3} by a factor of 3 (i.e., multiply it by 3). The new w_{3} is then

$$
w_{3}=3 x^{2}-1
$$

We can now find an orthonormal basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ by normalizing each vector in the orthogonal basis $\left\{w_{1}, w_{2}, w_{3}\right\}$:

$$
\begin{aligned}
& v_{1}=\frac{1}{\left\|w_{1}\right\|} w_{1}=\frac{1}{\sqrt{(1,1)}} \cdot(1)=\frac{1}{\sqrt{2}} \cdot 1=\frac{1}{\sqrt{2}} \\
& v_{2}=\frac{1}{\left\|w_{2}\right\|} w_{2}=\frac{1}{\sqrt{(x, x)}} \cdot(x)=\frac{1}{1}(x)=x \\
& v_{3}=\frac{1}{\left\|w_{3}\right\|} w_{3}=\frac{1}{\sqrt{\left(3 x^{2}-1,3 x^{2}-1\right)}} \cdot 1=\frac{1}{\sqrt{8 / 5}} \cdot\left(3 x^{2}-1\right)=\frac{\sqrt{10}}{4}\left(3 x^{2}-1\right)
\end{aligned}
$$

Thus an orthonormal basis for $P_{2}(\mathbb{R})$ is

$$
\left\{v_{1}, v_{2}, v_{3}\right\}=\left\{\frac{1}{\sqrt{2}}, x, \frac{\sqrt{10}}{4}\left(3 x^{2}-1\right)\right\} .
$$

(b) Consider the derivative operator $D: V \rightarrow V$ given by $D(u)=u^{\prime}$. Determine the adjoint operator D^{*}.
Solution: We first want to find the matrix representation for D with respect to the orthonormal basis

$$
\mathcal{B}=\left\{v_{1}, v_{2}, v_{3}\right\}=\left\{\frac{1}{\sqrt{2}}, x, \frac{\sqrt{10}}{4}\left(3 x^{2}-1\right)\right\}
$$

that we found part (a). Applying D to each element of the basis gives

$$
\begin{aligned}
& D\left(v_{1}\right)=0 \\
& D\left(v_{2}\right)=1=\sqrt{2} v_{1} \\
& D\left(v_{3}\right)=\frac{3 \sqrt{10}}{2} x=\frac{3 \sqrt{10}}{2} v_{2} .
\end{aligned}
$$

Therefore the matrix representation of D with respect to the basis \mathcal{B} is

$$
[D]_{\mathcal{B}}=\left[\begin{array}{ccc}
0 & \sqrt{2} & 0 \\
0 & 0 & \frac{3 \sqrt{10}}{2} \\
0 & 0 & 0
\end{array}\right]
$$

The adjoint matrix is

$$
\left([D]_{\mathcal{B}}\right)^{*}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
\sqrt{2} & 0 & 0 \\
0 & \frac{3 \sqrt{10}}{2} & 0
\end{array}\right] .
$$

We can use this matrix to find D^{*} applied to the standard basis $\left\{1, x, x^{2}\right\}$. First, write these elements in \mathcal{B} coordinates:

$$
\begin{array}{rll}
1=\sqrt{2} v_{1} & \rightarrow & {[1]_{\mathcal{B}}=\left[\begin{array}{c}
\sqrt{2} \\
0 \\
0
\end{array}\right],} \\
x=v_{2} & \rightarrow & {[x]_{\mathcal{B}}=\left[\begin{array}{c}
0 \\
1 \\
0
\end{array}\right]} \\
x^{2}=\frac{2 \sqrt{10}}{15} v_{3}+\frac{\sqrt{2}}{3} v_{1} & \rightarrow & {\left[x^{2}\right]_{\mathcal{B}}=\left[\begin{array}{c}
\frac{\sqrt{2}}{3} \\
0 \\
\frac{2 \sqrt{10}}{15}
\end{array}\right] .}
\end{array}
$$

We can now calculate D^{*} applied to the standard basis vectors written in \mathcal{B} coordinates.

$$
\begin{aligned}
{\left[D^{*}(1)\right]_{\mathcal{B}} } & =\left[\begin{array}{ccc}
0 & 0 & 0 \\
\sqrt{2} & 0 & 0 \\
0 & \frac{3 \sqrt{10}}{2} & 0
\end{array}\right]\left[\begin{array}{c}
\sqrt{2} \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right], \\
{\left[D^{*}(x)\right]_{\mathcal{B}} } & =\left[\begin{array}{ccc}
0 & 0 & 0 \\
\sqrt{2} & 0 & 0 \\
0 & \frac{3 \sqrt{10}}{2} & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\frac{3 \sqrt{10}}{2}
\end{array}\right],
\end{aligned}
$$

$$
\left[D^{*}\left(x^{2}\right)\right]_{\mathcal{B}}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
\sqrt{2} & 0 & 0 \\
0 & \frac{3 \sqrt{10}}{2} & 0
\end{array}\right]\left[\begin{array}{c}
\frac{\sqrt{2}}{3} \\
0 \\
\frac{2 \sqrt{10}}{15}
\end{array}\right]=\left[\begin{array}{l}
\frac{2}{3} \\
0 \\
0
\end{array}\right] .
$$

Converting back to polynomials gives

$$
\begin{aligned}
D^{*}(1) & =2 v_{1} \\
& =2 x \\
D^{*}(x) & =\frac{3 \sqrt{10}}{2} v_{3} \\
& =\frac{3 \sqrt{10}}{2} \cdot \frac{\sqrt{10}}{4}\left(3 x^{2}-1\right) \\
& =\frac{15}{4}\left(3 x^{2}-1\right) \\
D^{*}\left(x^{2}\right) & =\frac{2}{3} v_{1} \\
& =\frac{2}{3} \cdot \frac{1}{\sqrt{2}} \\
& =\frac{\sqrt{2}}{3} .
\end{aligned}
$$

Since D^{*} is a linear operator, we can calculate D^{*} for any polynomial $a x^{2}+b x+c$ where $a, b, c \in \mathbb{R}$:

$$
\begin{aligned}
D^{*}\left(a x^{2}+b x+c\right) & =a D^{*}\left(x^{2}\right)+b D^{*}(x)+c D^{*}(1) \\
& =a\left(\frac{\sqrt{2}}{3}\right)+b\left(\frac{15}{4}\left(3 x^{2}-1\right)\right)+c(2 x) .
\end{aligned}
$$

6. Find a singular value decomposition of each square matrix below.
(a) $A=\left[\begin{array}{cc}3 & -2 \\ -6 & -1\end{array}\right]$

Solution: The goal is to find unitary matrices P, Q and the diagonal matrix D of singular values such that

$$
A=P D Q^{*}
$$

To find the diagonal matrix D, we need to find the singular values of A. First, find the eigenvalues of

$$
A^{*} A=\left[\begin{array}{cc}
45 & 0 \\
0 & 5
\end{array}\right]
$$

The eigenvalues are $\lambda_{1}=45$ and $\lambda_{2}=5$. The singular values σ_{1}, σ_{2} of A are then the square roots of the eigenvalues of $A^{*} A$:

$$
\sigma_{1}=\sqrt{\lambda_{1}}=\sqrt{45}=3 \sqrt{5} \quad \text { and } \quad \sigma_{2}=\sqrt{\lambda_{2}}=\sqrt{5}
$$

The matrix D is the diagonal matrix with the singular values along the diagonal:

$$
D=\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2}
\end{array}\right]=\left[\begin{array}{cc}
\sqrt{45} & 0 \\
0 & \sqrt{5}
\end{array}\right] .
$$

Next we want to find the matrix Q. The columns of Q are an orthonormal basis of eigenvectors for $A^{*} A$. Recall that the eigenvalues of $A^{*} A$ are $\lambda_{1}=45$ and $\lambda_{2}=5$. The eigenspace associated to each eigenvalue has basis element

$$
\lambda_{1}=45:\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \quad \lambda_{2}=5:\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Notice that both of these vectors have magnitude 1. If they did not, we would have to normalize them (i.e., divide them by their magnitude). Therefore

$$
\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}
$$

is the desired orthonormal basis for $A^{*} A$. The matrix Q is then

$$
V=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Notice that the order of the columns in Q matches the order of the singular values in D. Finally, we want to find the unitary matrix P. We can find the k th column p_{k} of P using the formula

$$
p_{k}=\frac{1}{\sigma_{k}} A q_{k}
$$

where σ_{k} is the k th singular value and q_{k} is the k th column of Q. We get

$$
\begin{aligned}
p_{1} & =\frac{1}{3 \sqrt{5}}\left[\begin{array}{cc}
3 & -2 \\
-6 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] & p_{2} & =\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
3 & -2 \\
-6 & -1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& =\frac{1}{3 \sqrt{5}}\left[\begin{array}{c}
3 \\
-6
\end{array}\right] & & =\frac{1}{\sqrt{5}}\left[\begin{array}{l}
-2 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{1}{\sqrt{5}} \\
-\frac{2}{\sqrt{5}}
\end{array}\right] & & =\left[\begin{array}{c}
-\frac{2}{\sqrt{5}} \\
-\frac{1}{\sqrt{5}}
\end{array}\right]
\end{aligned}
$$

Therefore

$$
P=\left[\begin{array}{cc}
\frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\
-\frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}}
\end{array}\right] .
$$

A singular value decomposition of A is then

$$
A=P D Q^{*}=\left[\begin{array}{cc}
\frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\
-\frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}}
\end{array}\right]\left[\begin{array}{cc}
3 \sqrt{5} & 0 \\
0 & \sqrt{5}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

(b) $B=\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right]$

Solution: We want to find unitary matrices P, Q and the diagonal matrix D of singular values such that

$$
B=P D Q^{*} .
$$

We first find D. Calculate $B^{*} B$:

$$
B^{*} B=\left[\begin{array}{ll}
2 & 4 \\
4 & 8
\end{array}\right] \text {. }
$$

The eigenvalues of $B^{*} B$ are $\lambda_{1}=10$ and $\lambda_{2}=0$. Therefore the singular values are $\sigma_{1}=\sqrt{10}$ and $\sigma_{2}=0$. The diagonal matrix D is given by

$$
D=\left[\begin{array}{cc}
\sqrt{10} & 0 \\
0 & 0
\end{array}\right] .
$$

Next we want to find Q. The eigenspace associated to each eigenvalue of $B^{*} B$ has basis element

$$
\lambda_{1}=10:\left[\begin{array}{l}
1 \\
2
\end{array}\right], \quad \quad \lambda_{2}=0:\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

We want unit eigenvectors, so we need to divide each vector by its magnitude:

$$
\left[\begin{array}{l}
1 \\
2
\end{array}\right] \rightarrow\left[\begin{array}{c}
\frac{1}{\sqrt{5}} \\
\frac{2}{\sqrt{5}}
\end{array}\right], \quad\left[\begin{array}{c}
-2 \\
1
\end{array}\right] \rightarrow\left[\begin{array}{c}
-\frac{2}{\sqrt{5}} \\
\frac{1}{\sqrt{5}}
\end{array}\right] .
$$

Therefore

$$
Q=\left[\begin{array}{cc}
\frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\
\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}
\end{array}\right] \quad \text { and } \quad Q^{*}=\left[\begin{array}{cc}
\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\
-\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}
\end{array}\right] .
$$

Finally, we need to find P. We can find the first column p_{1} of P using the formula

$$
p_{k}=\frac{1}{\sigma_{k}} B v_{k}
$$

where σ_{k} is the k th singular value and p_{k} and q_{k} are the k th columns of P and Q respectively. The calculation for p_{1} is

$$
\begin{aligned}
p_{1} & =\frac{1}{\sqrt{10}}\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right]\left[\begin{array}{c}
\frac{1}{\sqrt{5}} \\
\frac{2}{\sqrt{5}}
\end{array}\right] . \\
& =\frac{1}{\sqrt{50}}\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
& =\frac{1}{5 \sqrt{2}}\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
& =\frac{1}{5 \sqrt{2}}\left[\begin{array}{l}
5 \\
5
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
\end{aligned}
$$

Notice that we cannot use the formula to find p_{2}, because $\sigma_{2}=0$. Instead, we need to find a unit vector that is orthogonal to p_{1}. The standard way to do this is to pick some vector x such that x and p_{1} are linearly independent. We would then calculate the vector

$$
y=x-\operatorname{proj}_{p_{1}}(x)
$$

The second row p_{2} of P is then

$$
p_{2}=\frac{1}{\|y\|} y
$$

I will skip most of this process by noting that the vector $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ is orthogonal to p_{1}. Normalizing this vector (i.e., dividing it by its norm) gives

$$
p_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right]
$$

The matrix P is

$$
P=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]
$$

A singular value decomposition of B is then

$$
B=P D Q^{*}=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{cc}
\sqrt{10} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\
-\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}
\end{array}\right] .
$$

(c) $C=\left[\begin{array}{cc}2 & 1-i \\ 1+i & 1\end{array}\right]$.

Solution: We want to find unitary matrices P, Q and the diagonal matrix D of singular values such that

$$
C=P D Q^{*}
$$

We first find D. Calculate $C^{*} C$:

$$
C^{*} C=\left[\begin{array}{cc}
6 & 3-3 i \\
3+3 i & 3
\end{array}\right]
$$

The eigenvalues of $C^{*} C$ are $\lambda_{1}=9$ and $\lambda_{2}=0$. Therefore the singular values are $\sigma_{1}=3$ and $\sigma_{2}=0$. The diagonal matrix D is given by

$$
D=\left[\begin{array}{ll}
3 & 0 \\
0 & 0
\end{array}\right]
$$

Next we want to find Q. The eigenspace associated to each eigenvalue of $C^{*} C$ has basis element

$$
\lambda_{1}=9:\left[\begin{array}{c}
1-i \\
1
\end{array}\right], \quad \quad \lambda_{2}=0: \quad\left[\begin{array}{c}
1 \\
-1-i
\end{array}\right]
$$

We want unit eigenvectors, so we need to divide each vector by its magnitude. Note that

$$
\left\|\left[\begin{array}{c}
1-i \\
1
\end{array}\right]\right\|=\sqrt{(1-i) \overline{(1-i)}+(1) \overline{(1)}}=\sqrt{(1-i)(1+i)+(1)(1)}=\sqrt{2+1}=\sqrt{3}
$$

and

$$
\left\|\left[\begin{array}{cc}
1 \\
-1-i
\end{array}\right]\right\|=\sqrt{(1) \overline{(1)}+(-1-i) \overline{(-1-i)}}=\sqrt{(1)(1)+(-1-i)(-1+i)}=\sqrt{1+2}=\sqrt{3}
$$

so

$$
\left[\begin{array}{c}
1-i \\
1
\end{array}\right] \rightarrow\left[\begin{array}{c}
\frac{1-i}{\sqrt{3}} \\
\frac{1}{\sqrt{3}}
\end{array}\right], \quad\left[\begin{array}{c}
1 \\
-1-i
\end{array}\right] \rightarrow\left[\begin{array}{c}
-\frac{1}{\sqrt{3}} \\
\frac{-1-i}{\sqrt{3}}
\end{array}\right]
$$

Therefore

$$
Q=\left[\begin{array}{cc}
\frac{1-i}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} & \frac{-1-i}{\sqrt{3}}
\end{array}\right] \quad \text { and } \quad Q^{*}=\left[\begin{array}{cc}
\frac{1+i}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{3}} & \frac{-1+i}{\sqrt{3}}
\end{array}\right]
$$

Finally, we need to find P. We can find the first column p_{1} of P using the formula

$$
p_{k}=\frac{1}{\sigma_{k}} C v_{k}
$$

where σ_{k} is the k th singular value and p_{k} and q_{k} are the k th columns of P and Q respectively. The calculation for p_{1} is

$$
\begin{aligned}
p_{1} & =\frac{1}{3}\left[\begin{array}{cc}
2 & 1-i \\
1+i & 1
\end{array}\right]\left[\begin{array}{c}
\frac{1-i}{\sqrt{3}} \\
\frac{1}{\sqrt{3}}
\end{array}\right] \\
& =\frac{1}{3 \sqrt{3}}\left[\begin{array}{cc}
2 & 1-i \\
1+i & 1
\end{array}\right]\left[\begin{array}{c}
1-i \\
1
\end{array}\right] \\
& =\frac{1}{3 \sqrt{3}}\left[\begin{array}{c}
3-3 i \\
3
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{1-i}{\sqrt{3}} \\
\frac{1}{\sqrt{3}}
\end{array}\right]
\end{aligned}
$$

Notice that $p_{1}=q_{1}$. We want to choose p_{2} such that p_{1} and p_{2} are orthogonal, so just choose $p_{2}=q_{2}$ (this works since q_{2} is orthogonal to $q_{1}=p_{1}$). That is,

$$
p_{2}=q_{2}=\left[\begin{array}{c}
-\frac{1}{\sqrt{3}} \\
\frac{-1-i}{\sqrt{3}}
\end{array}\right]
$$

Therefore

$$
P=Q=\left[\begin{array}{cc}
\frac{1-i}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} & \frac{-1-i}{\sqrt{3}}
\end{array}\right]
$$

A singular value decomposition of C is then

$$
C=P D Q^{*}=\left[\begin{array}{cc}
\frac{1-i}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} & \frac{-1-i}{\sqrt{3}}
\end{array}\right]\left[\begin{array}{ll}
3 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
\frac{1+i}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{3}} & \frac{-1+i}{\sqrt{3}}
\end{array}\right] .
$$

