Homework 8

Due 03/13/2020

In the following problems, make sure to write your arguments coherently in full sentences. Start a sentence with words rather than a formula. Use words to transition your ideas, for example "This leads to", "Therefore", "We want to show", etc.

1. Find a least squares solution to the following inconsistent system AX = b.

(a)
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$
 and $b = \begin{bmatrix} 3 \\ 5 \\ 8 \end{bmatrix}$.
(b) $A = \begin{bmatrix} i & 1 \\ 2 & -2i \end{bmatrix}$ and $b = \begin{bmatrix} i+1 \\ 1 \end{bmatrix}$.

- 2. Find a plane z = ax + by + c that best fits five points (1, 1, 1), (1, 2, 4), (2, 0, 1), (-1, 2, 7), (5, 4, 1). Is the answer unique?
- 3. Let $A, B \in M_{n \times n}(\mathbb{C})$. Recall that A is *unitary* if $A^{-1} = A^*$. Show that if A and B are unitary then so is AB.
- 4. Let $A \in M_{m \times n}(\mathbb{C})$. Show that
 - (a) The eigenvalues of A^*A are real and non-negative.
 - (b) $\operatorname{null}(A^*A + I_n) = \{0\}.$
 - (c) The matrix $A^*A + I_n$ is invertible.
- 5. Consider the real inner product space $V = P_2(\mathbb{R})$ with inner product given by

$$(u,v) = \int_{-1}^{1} u(x)v(x)dx.$$

- (a) Find an orthonormal basis of V.
- (b) Consider the derivative operator $D: V \to V$ given by D(u) = u'. Determine the adjoint operator D^* .

Do the following problem for 6 bonus points.

6. Find a singular value decomposition of the following matrices.

(a)
$$A = \begin{bmatrix} 3 & -2 \\ -6 & -1 \end{bmatrix}$$

(b)
$$B = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$$

(c)
$$C = \begin{bmatrix} 2 & 1-i \\ 1+i & 1 \end{bmatrix}$$