Homework 8

Due 03/13/2020
In the following problems, make sure to write your arguments coherently in full sentences. Start a sentence with words rather than a formula. Use words to transition your ideas, for example "This leads to", "Therefore", "We want to show", etc.

1. Find a least squares solution to the following inconsistent system $A X=b$.

$$
\begin{aligned}
& \text { (a) } A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right] \text { and } b=\left[\begin{array}{l}
3 \\
5 \\
8
\end{array}\right] . \\
& \text { (b) } A=\left[\begin{array}{cc}
i & 1 \\
2 & -2 i
\end{array}\right] \text { and } b=\left[\begin{array}{c}
i+1 \\
1
\end{array}\right] .
\end{aligned}
$$

2. Find a plane $z=a x+b y+c$ that best fits five points $(1,1,1),(1,2,4),(2,0,1),(-1,2,7)$, $(5,4,1)$. Is the answer unique?
3. Let $A, B \in M_{n \times n}(\mathbb{C})$. Recall that A is unitary if $A^{-1}=A^{*}$. Show that if A and B are unitary then so is $A B$.
4. Let $A \in M_{m \times n}(\mathbb{C})$. Show that
(a) The eigenvalues of $A^{*} A$ are real and non-negative.
(b) $\operatorname{null}\left(A^{*} A+I_{n}\right)=\{0\}$.
(c) The matrix $A^{*} A+I_{n}$ is invertible.
5. Consider the real inner product space $V=P_{2}(\mathbb{R})$ with inner product given by

$$
(u, v)=\int_{-1}^{1} u(x) v(x) d x
$$

(a) Find an orthonormal basis of V.
(b) Consider the derivative operator $D: V \rightarrow V$ given by $D(u)=u^{\prime}$. Determine the adjoint operator D^{*}.

Do the following problem for 6 bonus points.
6. Find a singular value decomposition of the following matrices.
(a) $A=\left[\begin{array}{cc}3 & -2 \\ -6 & -1\end{array}\right]$
(b) $B=\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right]$
(c) $C=\left[\begin{array}{cc}2 & 1-i \\ 1+i & 1\end{array}\right]$.

