Lecture 14

Friday, February 7, 2020

Similarly, the eigenspace of f corresponding to $\lambda = -1$ is $E_{-1} = span \left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}.$

We have found the eigenvalues and eigenspaces of f. Our method was to translate the problem on the abstract vector space $M_{2\times 2}(\mathbb{R})$ to a concrete vector space \mathbb{R}^4 . This is done by fixing a basis of $M_{2\times 2}(\mathbb{R})$ (we chose the standard basis) and replace abstract vectors (which are matrices in this case) by their coordinate vectors (vectors in \mathbb{R}^4).

There is another method to find the eigenvalues and eigenspaces of f which doesn't resort to coordinates. We will discuss it after the midterm.