Some review problems for Midterm

1. Review Homework 1, 2, 3.
2. Review Worksheets 1 through 6.
3. Review Recitation worksheets.
4. Do Problem 1, Part (a) of Homework 4.
5. Consider the linear map $G: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ given by $G(u)=x u^{\prime}-u$. Is G a monomorphism, epimorphism, isomorphism or none of them? Explain your answer.
6. Consider a linear map $f: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ given by $f(A)=A^{T}+A$.
(a) Find a matrix representation of f.
(b) Consider

$$
V=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in M_{2 \times 2}(\mathbb{R}): \quad a+2 b=0\right\} .
$$

Is V invariant under f ? Explain your answer.
7. Let

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & -2 \\
1 & 0 & 3
\end{array}\right] .
$$

Put

$$
\begin{aligned}
V_{1} & =\left\{v \in \mathbb{R}^{3}: A v=v\right\}, \\
V_{2} & =\left\{v \in \mathbb{R}^{3}: A v=2 v\right\}, \\
V_{3} & =\left\{v \in \mathbb{R}^{3}: A v=3 v\right\} .
\end{aligned}
$$

Show that $V_{1} \oplus V_{2} \oplus V_{3}=\mathbb{R}^{3}$.

