MATH 342, MIDTERM EXAM, WINTER 2020

Name	Student ID

- Answer to each problem must be written coherently in full sentences. Answers not supported by valid arguments will not receive full credit. Start a sentence with words rather than a formula. Use words to transition your ideas, for example "This leads to", "Therefore", "We want to show", etc.
- Read carefully the description of each problem. Make sure that you do all parts of the problem. You have 2 pages to work on Problem 2, Part (b). You can use the blank page on the back
- Doing correctly Problems 2, 3, 4, 5 will grant you 100% credit of the exam. Each correct answer in Problem 1 will give you one bonus point.

Problem	Possible points	Earned points
1	7	
2a	10	
2b	10	
3	10	
4	10	
5	10	
Total	57	

Problem 1. (7 points) To each of the following statements, circle T if the statement is true. Circle F if it is false.

- 1. (T/F) The set $\{u \in P_2(\mathbb{R}) : u(0) = 1\}$ is a vector space over \mathbb{R} .
- 2. (T/F) There is an onto linear map from \mathbb{R}^2 to \mathbb{R}^3 .
- 3. ((T)/ F) There is an onto linear map from \mathbb{R}^3 to \mathbb{R}^2 .
- 4. ((1) / F) If dim U=3 and dim V=2 then $\dim(U+V)$ can never exceed 5.
- 5. (T/F) The dimension of the complex vector space of complex polynomials of degree at most n is equal to n.
- 6. (\bigcirc / F) If $B = \{v_1, v_2, \dots, v_n\}$ is linearly independent then any nonempty subset of B is also linearly independent.
- 7. (T/F) If S is a finite set of vectors that span a vector space V then there exists a subset of S that is a basis of V.

Problem 2. Let $V = \{A \in M_{2 \times 2}(\mathbb{R}) : A = -A^T\}$. Here A^T denotes the transpose of matrix A. (a) (10 points) Show that V is a vector space over \mathbb{R} .

By the definition of V, V is a subset of M2x2(R), which is known to be a vector space over IR. Thus, we only need to show 3 things. 1) OEV 2) V is closed under addition. 3) V is closed under scaling. Show (): The zero matrix $\begin{bmatrix} 0 & 0 \end{bmatrix}$ belongs to V because $\begin{bmatrix} 0 & 0 \end{bmatrix} = -\begin{bmatrix} 0 & 0 \end{bmatrix}'$. Show 2): Let A, BEV. we show that A+BEV. For that, we need to show $A+B = -(A+B)^{T}.$ (*) We know that $RHS(4) = -(A^T + B^T) = -A^T - B^T$ Because A, BEV, we have AT = -A and BT = -B. Thus, RHS(*) = A + B = LHS(*).Therefore, Vis closed under addition. Show 3 Lot CER and AEV. We show that CAEV. That is to show CA = - (CAT. we have $(A)^T = cA^T = -cA$ t because $A \in V$ Thus, V is closed under scaling

(b) (10 points) Find a basis of V. What is the dimension of V?

We can write V as

$$V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{2n}(R) : \begin{bmatrix} a & b \\ c & d \end{bmatrix} = -\begin{bmatrix} a & c \\ b & d \end{bmatrix} \right\}$$

$$= \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{2n}(R) : \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} -a & -c \\ -b & -d \end{bmatrix} \right\}$$

$$= \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{2n}(R) : a = -a, b = -c, c = -b, d = -d \right\}$$

$$= \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{2n}(R) : a = d = 0, b = -c \right\}$$

$$= \left\{ \begin{bmatrix} 0 & b \\ -b & 0 \end{bmatrix} : b \in R \right\}$$

$$= \left\{ b \begin{bmatrix} 0 & 1 \\ -b & 0 \end{bmatrix} : b \in R \right\}$$

$$= \left\{ b \begin{bmatrix} 0 & 1 \\ -b & 0 \end{bmatrix} : b \in R \right\}$$
Thus, $\left\{ \begin{bmatrix} 0 & 1 \\ -d & 0 \end{bmatrix} \right\}$ is a basis of V.

$$dim V = I.$$

(Extra space for Problem 2b.)

Problem 3. (10 points) Consider a linear map $G : P_2(\mathbb{R}) \to P_2(\mathbb{R})$ given by G(u) = u + u'. Find a matrix representation of G.

We choose a basis on
$$P_2(R)$$
: $B = \{x_i^2, x_i, 1\}$ (the standard basis)
By the dependence of $[G]_{B_iB_i}$, we have
 $[G_i]_{B_iB} = \begin{bmatrix} [G(v_i)]_B & [G(v_i)]_B & [G(v_i)]_B \end{bmatrix}$.
We have

$$\begin{aligned} & G(v_i) = v_i' + v_i = 2x + x^2 = 2v_2 + v_i \\ & \text{Then } \left[G(v_i) \right]_{\mathsf{R}} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}. \end{aligned}$$

Similarly,
$$G(v_1) = v_1' + v_2 = 1 + \kappa = v_3 + v_2$$
.

Then
$$[G(v_{\lambda})] = \begin{bmatrix} 0\\ 1 \end{bmatrix}$$
.

Also,
$$G(v_1) = v_1' + v_2 = O + I = I = v_3$$
.

Then
$$[G(v_3)]_B = \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}$$
.

In conclusion, the matrix representing G in basis B is $\begin{bmatrix} G \\ B, B \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ **Problem 4.** (10 points) Show that the map G given in Problem 3 is a monomorphism.

To show that G is a monomorphism, we show that null
$$(4) = 503$$
.
Let $u \in null (4)$. We can write $u = ax^{+} + bxtc$ for some $a, b, c \in \mathbb{R}$.
Because $u \in null (G)$, $G(u) = 0$. In other words, $u' + u = 0$.
Thus, $(2axtb) + (ax^{2} + bxtc) = 0$.
Equivalently, $ax^{2} + (2atb)x + btc = 0$
This is true for all $x \in \mathbb{R}$ only if $a = 2atb = btc = 0$.
This gives $a = b = c = 0$. Thus, $u = 0$. we have showed that null $G(a) = 503$.
Therefore, G is a monomorphism.

Problem 5. (10 points) Consider two vector spaces

$$U = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 = x_2 = x_3\},\$$

$$V = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 = -x_3, 2x_2 = x_4\}.$$
Find a basis of $U + V$. Is $U + V$ a direct sum? Show that $U + V$ is a direct sum.
We will show that $U \cap V = \{0\}$.
Each $n = (n_1, n_2, n_3, n_4) \in IR^4$ satisfies the system

$$\begin{cases} n_1 = n_2 = n_3, \\ x_1 = -n_3, 2x_2 = x_4. \end{cases}$$
From here we get $n_1 = n_3$, $n_1 = -x_3$ This implies $n_1 = 0$. Thus, $n_2 = n_3 = 0$.

Then ng=0 we conclude that UNV=E03.