$$
\text { MATH 342, MIDTERM EXAM, WINTER } 2020
$$

Name	Student ID

- Answer to each problem must be written coherently in full sentences. Answers not supported by valid arguments will not receive full credit. Start a sentence with words rather than a formula. Use words to transition your ideas, for example "This leads to", "Therefore", "We want to show", etc.
- Read carefully the description of each problem. Make sure that you do all parts of the problem. You have 2 pages to work on Problem 2, Part (b). You can use the blank page on the back if need more space.
- Doing correctly Problems 2, 3, 4, 5 will grant you 100% credit of the exam. Each correct answer in Problem 1 will give you one bonus point.

Problem	Possible points	Earned points
1	7	
2 a	10	
2 b	10	
3	10	
4	10	
5	10	
Total	57	

Problem 1. (7 points) To each of the following statements, circle T if the statement is true. Circle F if it is false.

1. ($\mathrm{T} / \mathrm{F})$ The set $\left\{u \in P_{2}(\mathbb{R}): u(0)=1\right\}$ is a vector space over \mathbb{R}.
2. (T / F There is an onto linear map from \mathbb{R}^{2} to \mathbb{R}^{3}.
3. (T)/F) There is an onto linear map from \mathbb{R}^{3} to \mathbb{R}^{2}.
4. ((1) / F) If $\operatorname{dim} U=3$ and $\operatorname{dim} V=2$ then $\operatorname{dim}(U+V)$ can never exceed 5 .
5. (T / F) The dimension of the complex vector space of complex polynomials of degree at most n is equal to n.
6. ((1) / F) If $B=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is linearly independent then any nonempty subset of B is also linearly independent.
7. (T$) / \mathrm{F})$ If S is a finite set of vectors that span a vector space V then there exists a subset of S that is a basis of V.

Problem 2. Let $V=\left\{A \in M_{2 \times 2}(\mathbb{R}): A=-A^{T}\right\}$. Here A^{T} denotes the transpose of matrix A. (a) (10 points) Show that V is a vector space over \mathbb{R}.

By the definition of V, V is a subset of $M_{2 \times 2}(\mathbb{R})$, which is known to be a vector space over \mathbb{R}. Thus, we only need to show 3 things:

1) $0 \in V$.
2) V is closed under addition.
3) V is closed under scaling.

Show 1): The zero matrix $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ belongs to V because $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=-\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]^{\top}$.
Show 2): Let $A, B \in V$. We show that $A+B \in V$.
For that, we need to show

$$
\begin{equation*}
A+B=-(A+B)^{\top} . \tag{*}
\end{equation*}
$$

We know that

$$
\operatorname{RHS}(*)=-\left(A^{\top}+B^{\top}\right)=-A^{\top}-B^{\top}
$$

Because $A, B \in V$, we have $A^{\top}=-A$ and $B^{\top}=-B$. Thus,

$$
\operatorname{RHS}(*)=A+B=\operatorname{LHS}(*) .
$$

Therefore, V is closed under addition.
Show 3 Let $c \in \mathbb{R}$ and $A \in V$. We show that $c A \in V$. That is to show $C A=-(C A)^{\top}$. we have

$$
(C A)^{T}=C A^{\top} \bar{\uparrow}_{\text {because }}-c A
$$

because $A \in V$
Thus, V is closed under scaling.
(b) (10 points) Find a basis of V. What is the dimension of V ?

We can write V as

$$
\begin{aligned}
V & =\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in M_{2 \times 2}(\mathbb{R}):\left[\begin{array}{ll}
u & b \\
c & d
\end{array}\right]=-\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]\right\} \\
& =\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in M_{2 \times 2}(\mathbb{R}):\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
-a & c \\
-b & -d
\end{array}\right]\right\} \\
& =\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in M_{2 \times 2}(\mathbb{R}): a=-a, b=-c, c=-b, d=-d\right\} \\
& =\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in M_{2 \times 2}(\mathbb{R}): a=d=0, b=-c\right\} \\
& =\left\{\left[\begin{array}{cc}
0 & b \\
-b & 0
\end{array}\right]: b \in \mathbb{R}\right\} \\
& =\left\{b\left[\begin{array}{ll}
0 & 1 \\
-1 & b
\end{array}\right]: b \in \mathbb{R}\right\} \\
& =\operatorname{sen}\left\{\left[\begin{array}{cc}
0 & 1 \\
-1 & d
\end{array}\right]\right\}
\end{aligned}
$$

Thus, $\left\{\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]\right\}$ is a basis of V.

$$
\operatorname{dim} V=1
$$

(Extra space for Problem 2b.)

Problem 3. (10 points) Consider a linear map $G: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ given by $G(u)=u+u^{\prime}$. Find a matrix representation of G.

We choose a basis on $P_{2}(\mathbb{R}): \quad B=\left\{\begin{array}{llll}\left\{x_{1}^{2}\right. & x_{1} & 1 \\ v_{1} & v_{2} & r_{3}\end{array}\right.$ (the standard basis).
By the definition of $[G]_{B_{1} B \text {, we have }}$

$$
[G]_{B_{1} B}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
{\left[G\left(v_{l}\right)\right]_{B}} & {\left[G\left(v_{i}\right)\right]_{B}} & {\left[G\left(v_{j}\right)\right]_{B}} \\
1 & 1 & 1
\end{array}\right] .
$$

We have

$$
G\left(v_{1}\right)=v_{1}^{\prime}+v_{1}=2 x+x^{2}=2 v_{2}+v_{1} .
$$

Then $[G(v,)]_{\beta}=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$.
Similarly,

$$
G\left(v_{2}\right)=v_{2}^{\prime}+v_{2}=1+x=v_{3}+v_{2}
$$

Then $\quad\left[G\left(v_{2}\right)\right]_{B}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$.
Also, $\quad G\left(v_{3}\right)=v_{3}^{\prime}+v_{3}=0+1=1=v_{3}$.
Then $\quad\left[G\left(v_{3}\right)\right]_{B}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.
In conclusion, the matrix representing G in basis B is

$$
[G]_{B, B}=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] .
$$

Problem 4. (10 points) Show that the map G given in Problem 3 is a monomorphism.
To show that G is a monomaphism, we show that null $(G)=\{0\}$. Let $u \in$ null (G). We can write $u=a x^{2}+b x+c$ for some $a, b, c \in \mathbb{R}$. Because u Enull $(G T), G(u)=0$. In other words, $u^{\prime}+u=0$.

Thus, $\quad(2 a x+b)+\left(a x^{2}+b x+c\right)=0$.
Equivalently, $\quad a x^{2}+(2 a+b) x+b+c=0$.
This is true for all $x \in \mathbb{R}$ only if $a=2 a+b=b+c=0$.
This gives $a=b=c=0$. Thus, $u=0$. we have showed that null $(G)=\{0\}$.
Therefore, G is a monomorphism.

Problem 5. (10 points) Consider two vector spaces

$$
\begin{aligned}
U & =\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}=x_{2}=x_{3}\right\} \\
V & =\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}=-x_{3}, 2 x_{2}=x_{4}\right\}
\end{aligned}
$$

Show that $U+V$ is a direct sum.
We will show that $U \cap V=\{0\}$.
Each $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}$ satisfies the system

$$
\left\{\begin{array}{l}
x_{1}=x_{2}=x_{3}, \\
x_{1}=-x_{3}, 2 x_{2}=x_{4} .
\end{array}\right.
$$

From have we get $x_{1}=x_{3}, x_{1}=-x_{3}$. This implies $x_{1}=0$. Thus, $x_{2}=x_{3}=0$. Then $x_{4}=0$. We conclude that $u \cap v=\{0\}$.

