Name:
Consider two vector spaces

$$
\begin{array}{lll}
U=\left\{f \in P_{3}(\mathbb{C}):\right. & f(0)=f(1)=0\} \\
V=\left\{f \in P_{3}(\mathbb{C}):\right. & f(1)=f(i)=0\} .
\end{array}
$$

1. Find a basis of U. What is the dimension of U ?
2. Find a basis of V. What is the dimension of V ?
3. Find a basis of $U+V$. What is the dimension of $U+V$?
1) Find a basis of U :

$$
\begin{aligned}
U & =\left\{f(z)=a z^{3}+b z^{2}+c z+d: \quad f(0)=f(1)=0\right\} \\
& =\left\{a z^{3}+b z^{2}+c z+d: \quad d=0, a+b+c+d=0\right\} \\
& =\left\{a z^{3}+b z^{2}+c z: \quad c=-a-b\right\} \\
& =\left\{a z^{3}+b z^{2}+(-a-b) z: a, b \in \mathbb{C}\right\} \quad \text { eliminate constraints } \\
& =\left\{a\left(z^{3}-z\right)+b\left(z^{2}-z\right): a, b \in \mathbb{C}\right\} \\
& =\operatorname{span}\{\underbrace{z^{3}-z}_{u_{1}}, \underbrace{z^{2}-z}_{u_{2}}\} \quad \text { now a and b are free }
\end{aligned}
$$

We checle that u_{1} and u_{2} are linearly independent: consider the equation $c_{1} u_{1}+c_{2} u_{2}=0$ with unknowns $c_{1}, c_{2} \in \mathbb{C}$. We have

$$
c_{1}\left(z^{3}-z\right)+c_{2}\left(z^{2}-z\right)=0 \quad \forall z \in \mathbb{C} .
$$

Pick $z=-1$ and $z=2$, we get $\varepsilon_{1}=c_{2}=0$.
Therefore, $\left\{m_{1}, a_{c}\right\}$ is a basis of M.
2) Find a basis of V :

$$
\begin{aligned}
V & =\left\{f(z)=a z^{3}+G z^{2}+c z+d: \quad f(1)=f(c)=0\right. \\
& =\left\{a z^{3}+b t^{2}+c z+d: a+b+c t d=0, a i^{3}+b 1^{2}+c i+d=0\right\} \\
& =\left\{a z^{3}+b z^{2}+c z+d: a+b+c+d=0, \quad-a i-b+c i+d=0\right\}
\end{aligned}
$$

We solve a system of two equations for a,bicid. The matirx form is

$$
\begin{aligned}
{\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-i & -1 & i & 1
\end{array}\right] } & \xrightarrow{R_{2}=R_{2}+i R_{1}}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & -1+i & 2 i & 1+i
\end{array}\right] \\
& \xrightarrow{R_{2}}=\stackrel{R_{2} /(-i)}{ }\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1 & -i+1 & -i
\end{array}\right] \\
& \xrightarrow{R_{1}=R_{1}-R_{2}}\left[\begin{array}{cccc}
1 & 0 & i & 1+i \\
0 & 1 & -i+1 & -i
\end{array}\right]
\end{aligned}
$$

free variables
We get $c=c, d=d, \quad b=(i-1) c+i d, a=-i c-(1+i) d$.
Thus,

$$
\begin{aligned}
U & =\left\{(-i c-(1+i) d) z^{3}+((i-1) c+i d) z^{2}+c z+d: \quad c \cdot d \in \mathbb{C}\right\} \\
& =\left\{c\left(-i z^{3}+(i-1) z^{2}+z\right)+d\left(-(1+i) z^{3}+i z^{2}+1\right): c_{1} d \in \mathbb{C}\right\} \\
& =\operatorname{span}\{-\frac{-i z^{3}+(i-1) z^{2}+z}{v_{1}},-\underbrace{-(1+1) z^{3}+i z^{2}+1}_{v_{2}}\}
\end{aligned}
$$

One can check that v and v_{2} are linearly independent.
3) Find a bass of $U+V$:

We notice that U and V are abstract vector spaces. For this reason, we will work on the coordinate vectors. U and V are subspaces of $P_{3}(C)$.
Let us choose the standard bass of $P_{3}(\mathbb{C})$, namely

$$
B=\left\{z^{3}, z^{2}, z, 1\right\} .
$$

The coordinate vectors of $u_{1}, u_{2}, v_{1}, v_{2}$ in this basis are

$$
u_{1}^{\prime}=\left[\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right], u_{2}^{\prime}=\left[\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right], v_{1}^{\prime}=\left[\begin{array}{c}
-i \\
i-1 \\
1 \\
0
\end{array}\right], \quad v_{2}^{\prime}=\left[\begin{array}{c}
-1-i \\
i \\
0 \\
1
\end{array}\right]
$$

U corresponds to $U^{\prime}=\operatorname{span}\left\{u_{1}^{\prime}, u_{2}^{\prime}\right\}$.
V corresponds to $V^{\prime}=\operatorname{span}\left\{v_{1}^{\prime}, V_{2}^{\prime}\right\}$.

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
u_{1}^{\prime} & u_{2}^{\prime} & v_{1}^{\prime} & v_{2}^{\prime} \\
1 & 1 & 1 & 1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & -i & -1-i \\
0 & 1 & i-1 & i \\
-1 & -1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
1 & 0 & -i & 0 \\
0 & 1 & -1-i & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Thus, $\left\{u_{1}^{\prime}, u_{2}^{\prime}, v_{2}^{\prime}\right\}$ is a basis of $u^{\prime}+V^{\prime}$. Therefore,

$$
\left\{u_{1}, u_{2}, v_{2}\right\} \text { is a basis of } U+V \text {. }
$$

About dimension, $\operatorname{dim}(U+V)=3, \operatorname{dim} U=2, \operatorname{dim} V=2$.

