Worksheet

1/31/2020
Name:

1. Let $V=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{2}=x_{1}+x_{3}, x_{3}=2 x_{1}-x_{2}+5 x_{4}\right\}$. Find a subspace W of \mathbb{R}^{4} such that $V \oplus W=\mathbb{R}^{4}$.
see Lecture 11.
2. Consider two vector spaces

$$
\begin{array}{ll}
V_{1}=\left\{A \in M_{2 \times 2}(\mathbb{R}): \quad A=A^{T}\right\}, \\
V_{2}=\left\{A \in M_{2 \times 2}(\mathbb{R}): \quad A=-A^{T}\right\} .
\end{array}
$$

Show that $V_{1} \oplus V_{2}=M_{2 \times 2}$.
First, we find a basis of V_{1} :

$$
\begin{aligned}
V_{1} & =\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in M_{2 \times 2}(\mathbb{R}):\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]\right\} \\
& =\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in M_{2 \times 2}(\mathbb{R}): b=c\right\} \\
& =\left\{\left[\begin{array}{ll}
a & b \\
b & d
\end{array}\right]: a_{1} b, d \in \mathbb{R}\right\} \\
& =\left\{a\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+b\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+d\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]: a, b, d \in \mathbb{R}\right\} \\
& =\operatorname{span}\{\underbrace{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \underbrace{\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]}_{v_{2}}, \underbrace{\left.\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}}_{v_{3}}}_{v_{1}} .
\end{aligned}
$$

To check of $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis of V_{1}, we need to check of it is linearly independent. Let us consider the equation $c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0$ with unknowns $c_{1}, c_{2}, c_{3} \in \mathbb{R}$. This equation can be written as

$$
\left[\begin{array}{ll}
c_{1} & c_{2} \\
c_{2} & c_{3}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
$$

Thus, $c_{1}=c_{2}=c_{3}=0$. We conclude that $B_{1}=\left\{v_{1}, v_{4} v_{3}\right\}$ is a basis of V_{1}.
Similarly, one can show that

$$
B_{2}=\{\underbrace{\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]}_{v_{4}}\}
$$

is a basis of V_{2}.

To show that $V_{1} \oplus V_{2}=M_{2 \times 2}(\mathbb{R})$, we need to show 2 things:

- The sum $V_{1}+V_{2}$ is a direct sum.
- The sum $V_{1}+V_{2}$ is 4 -dimensional (and thus it must be equal to $\left.M_{2 \times 2}(\mathbb{R})\right)$.
Both statements can be showed at once by showing that $B_{1} 山 B_{2}$ is linearly independent. We have

$$
B_{1} \cup B_{2}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} .
$$

One can show that these vectors are linearly independent directly or through coordinates. Let's use the second method: consider the standard basis of $M_{2_{2}}(\mathbb{R})$, namely

$$
B=\{\underbrace{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]}_{E_{1}}, \underbrace{\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]}_{E_{2}}, \underbrace{\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]}_{E_{3}}, \underbrace{\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]}_{E_{4}} .
$$

Then the coordinates of $v_{1}, v_{4} v_{3}, v_{4}$ are

$$
\begin{aligned}
& v_{1}^{\prime}=\left[v_{1}\right]_{B}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], \quad v_{2}^{\prime}=\left[v_{2}\right]_{B}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right], \\
& v_{3}^{\prime}=\left[v_{3}\right]_{B}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right], \quad v_{4}^{\prime}=\left[v_{4}\right]_{B}=\left[\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right] .
\end{aligned}
$$

To check of $v_{1}^{\prime}, v_{v}^{\prime}, v_{s}^{\prime}, v_{4}^{\prime}$ are linearly independent, we arrange them into a matrix

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
v_{l}^{\prime} & 0_{v}^{\prime} & v_{3}^{\prime} & v_{4}^{\prime} \\
1 & 1 & 1 & 1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Therefore, $\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}, v_{4}^{\prime}\right\}$ are linearly independent. Consequently, $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ are also linearly independent.

