\qquad
Show your work for each problem.

1. Let $A=\left[\begin{array}{cc}2 & 2 \\ -1 & 1\end{array}\right]$. Find the singular value decomposition of A.

Solution: We want to find unitary matrices P, Q and a diagonal matrix D such that

$$
A=P D Q^{*}
$$

We start by finding the eigenvalues of $A^{*} A$. Notice that

$$
A^{*} A=\left[\begin{array}{ll}
5 & 3 \\
3 & 5
\end{array}\right]
$$

The eigenvalues are $\lambda_{1}=8$ and $\lambda_{2}=2$. The Singular values are then

$$
\sigma_{1}=\sqrt{\lambda_{1}}=\sqrt{8} \quad \text { and } \quad \sigma_{2}=\sqrt{\lambda_{2}}=\sqrt{2}
$$

so the matrix D is given by

$$
D=\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2}
\end{array}\right]=\left[\begin{array}{cc}
\sqrt{8} & 0 \\
0 & \sqrt{2}
\end{array}\right] .
$$

Next we want to find the unitary matrix P. The columns of P are eigenvectors of

$$
A A^{*}=\left[\begin{array}{ll}
8 & 0 \\
0 & 2
\end{array}\right]
$$

Calculate the eigenvectors as you normally would. For $\lambda_{1}=8$ we get the eigenvector

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

For $\lambda_{2}=2$ we get the eigenvector

$$
\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Since these are already unit vectors, they will be the columns of our unitary matrix P :

$$
P=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Note that if these had not been unit vectors, we would have divided each vector by its magnitude to get the columns of P.
We can find the columns of Q by using the formula

$$
q_{k}=\frac{1}{\sigma_{k}} A^{*} p_{k}
$$

In this case

$$
\begin{aligned}
q_{1} & =\frac{1}{\sqrt{8}}\left[\begin{array}{cc}
2 & -1 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\frac{1}{\sqrt{8}}\left[\begin{array}{l}
2 \\
2
\end{array}\right] \\
& =\frac{1}{2 \sqrt{2}}\left[\begin{array}{l}
2 \\
2
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
q_{2} & =\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
2 & -1 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& =\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
\end{aligned}
$$

The matrix Q is then

$$
Q=\left[\begin{array}{cc}
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] .
$$

Note that we could have alternatively found Q first. In that case, Q would have columns that are an orthonormal set of eigenvectors for $A^{*} A$. The columns of P would be given by the formula

$$
p_{k}=\frac{1}{\sigma_{k}} A q_{k} .
$$

I choose to find P first simply because the calculations were a bit easier.
2. Find the plane of best fit $z=a x+b y+c$ for the points $(1,1,-1),(2,0,1),(0,0,5),(0,1,1)$.

Solution: We want to minimize the quantity

$$
\sum_{k=1}^{n}\left|a x_{k}+b y_{k}+c-z_{k}\right|^{2} .
$$

This is equivalent to finding the least-squares solution to the system $A \vec{x}=\vec{b}$ where

$$
A=\left[\begin{array}{ccc}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
\vdots & \vdots & \vdots \\
x_{n} & y_{n} & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 0 & 1 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{array}\right], \quad \vec{x}=\left[\begin{array}{c}
a \\
b \\
c
\end{array}\right], \quad \vec{b}=\left[\begin{array}{c}
z_{1} \\
z_{2} \\
\vdots \\
z_{n}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
5 \\
1
\end{array}\right] .
$$

To find the least-squares solution, we need to solve the equation $A^{*} A \vec{x}=A^{*} \vec{b}$. We calculate

$$
A^{*} A=\left[\begin{array}{lll}
5 & 1 & 3 \\
1 & 2 & 2 \\
3 & 2 & 4
\end{array}\right], \quad A^{*} \vec{b}=\left[\begin{array}{l}
1 \\
0 \\
6
\end{array}\right]
$$

We can now solve for \vec{x} by reducing the augmented system:

$$
\left[\begin{array}{lll|r}
5 & 1 & 3 & -1 \\
1 & 2 & 2 & 0 \\
3 & 2 & 4 & 6
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{lll|r}
1 & 0 & 0 & -2 \\
0 & 1 & 0 & -4 \\
0 & 0 & 1 & 5
\end{array}\right]
$$

Therefore

$$
z=-2 x-4 y+5
$$

is the plane of best fit for the given points.
3. Let V be a finite-dimensional inner product space and let $P: V \rightarrow V$ such that $P^{2}=P$.
(a) Prove that if P is the orthogonal projection onto some subspace U of V, then P is selfadjoint.
(Hint: use the fact that $V=U \oplus U^{\perp}$)
Solution: To show P is self-adjoint, we want to show that $(P x, y)=(x, P y)$ for all $x, y \in V$. Since $V=U \oplus U^{\perp}$ we can write

$$
x=u_{1}+w_{1}, \quad y=u_{2}+w_{2}, \quad u_{1}, u_{2} \in U \quad w_{1}, w_{2} \in U^{\perp} .
$$

Note that

$$
\left(u_{1}, w_{2}\right)=\left(w_{1}, u_{2}\right)=0 .
$$

Then

$$
\begin{aligned}
(P x, y) & =\left(u_{1}, y\right) \\
& =\left(u_{1}, u_{2}+w_{2}\right) \\
& =\left(u_{1}, u_{2}\right)+\left(u_{1}, w_{2}\right) \\
& =\left(u_{1}, u_{2}\right) \\
& =\left(u_{1}, u_{2}\right)+\left(w_{1}, u_{2}\right) \\
& =\left(u_{1}+w_{1}, u_{2}\right) \\
& =\left(x, u_{2}\right) \\
& =(z, P y) .
\end{aligned}
$$

(b) Prove that if P is self-adjoint, then P is the orthogonal projection onto $U=\operatorname{range}(P)$. (Hint: Prove $v-P V \in \operatorname{ker}(P)$. Consider $v=P v+(v-P V)$ and use the fact that $\left.\operatorname{ker}(P)=\operatorname{range}\left(P^{*}\right)^{\perp}\right)$
Solution: We want to show that for any $v \in V$,

$$
P v=\operatorname{proj}_{U}(v) .
$$

First, recall that $V=U \oplus U^{\perp}$, and if we write

$$
v=u+w, \quad u \in U, w \in U^{\perp}
$$

then $\operatorname{proj}_{U}(v)=u$,
Suppose P is self-adjoint, so $P=P^{*}$. Recall that $P^{2}=P$, so

$$
P(v-P V)=P v-P^{2} v=0
$$

and thus

$$
v-P v \in \operatorname{ker}(P)=\operatorname{range}\left(P^{*}\right)^{\perp}=\operatorname{range}(P)^{\perp} .
$$

Naturally we can write v as

$$
v=P v+(v-P v)=u+w
$$

where $u \in U=\operatorname{range}(P)$ and $w \in U^{\perp}=\operatorname{ker}(P)$. Therefore

$$
\operatorname{proj}_{U}(v)=u=P v
$$

as desired. Since v was arbitrary, this means that $P=\operatorname{proj}_{U}$.

