
MTH 342 Worksheet 10

Name: Answer Key Recitation time:

Show your work for each problem.

1. Let A =

[
2 2
−1 1

]
. Find the singular value decomposition of A.

Solution: We want to find unitary matrices P,Q and a diagonal matrix D such that

A = PDQ∗.

We start by finding the eigenvalues of A∗A. Notice that

A∗A =

[
5 3
3 5

]
,

The eigenvalues are λ1 = 8 and λ2 = 2. The Singular values are then

σ1 =
√
λ1 =

√
8 and σ2 =

√
λ2 =

√
2,

so the matrix D is given by

D =

[
σ1 0
0 σ2

]
=

[√
8 0

0
√

2

]
.

Next we want to find the unitary matrix P . The columns of P are eigenvectors of

AA∗ =

[
8 0
0 2

]
.

Calculate the eigenvectors as you normally would. For λ1 = 8 we get the eigenvector[
1
0

]
.

For λ2 = 2 we get the eigenvector [
0
1

]
Since these are already unit vectors, they will be the columns of our unitary matrix P :

P =

[
1 0
0 1

]
.

Note that if these had not been unit vectors, we would have divided each vector by its
magnitude to get the columns of P .

We can find the columns of Q by using the formula

qk =
1

σk
A∗pk.

In this case

q1 =
1√
8

[
2 −1
2 1

] [
1
0

]
=

1√
8

[
2
2

]
=

1

2
√

2

[
2
2

]

=

 1√
2

1√
2





and

q2 =
1√
2

[
2 −1
2 1

] [
0
1

]
=

1√
2

[
−1
1

]

=

− 1√
2

1√
2

 .
The matrix Q is then

Q =

− 1√
2

1√
2

1√
2

1√
2

 .
Note that we could have alternatively found Q first. In that case, Q would have columns that
are an orthonormal set of eigenvectors for A∗A. The columns of P would be given by the
formula

pk =
1

σk
Aqk.

I choose to find P first simply because the calculations were a bit easier.

2. Find the plane of best fit z = ax+ by + c for the points (1, 1,−1), (2, 0, 1), (0, 0, 5), (0, 1, 1).

Solution: We want to minimize the quantity

n∑
k=1

|axk + byk + c− zk|2.

This is equivalent to finding the least-squares solution to the system A~x = ~b where

A =


x1 y1 1
x2 y2 1
...

...
...

xn yn 1

 =


1 1 1
2 0 1
0 0 1
0 1 1

 , ~x =

ab
c

 , ~b =


z1
z2
...
zn

 =


−1
1
5
1

 .
To find the least-squares solution, we need to solve the equation A∗A~x = A∗~b. We calculate

A∗A =

5 1 3
1 2 2
3 2 4

 , A∗~b =

1
0
6

 .
We can now solve for ~x by reducing the augmented system:5 1 3 −1

1 2 2 0
3 2 4 6

 RREF−−−−→

1 0 0 −2
0 1 0 −4
0 0 1 5


Therefore

z = −2x− 4y + 5

is the plane of best fit for the given points.



3. Let V be a finite-dimensional inner product space and let P : V → V such that P 2 = P .

(a) Prove that if P is the orthogonal projection onto some subspace U of V , then P is self-
adjoint.
(Hint: use the fact that V = U ⊕ U⊥)

Solution: To show P is self-adjoint, we want to show that (Px, y) = (x, Py) for all
x, y ∈ V . Since V = U ⊕ U⊥ we can write

x = u1 + w1, y = u2 + w2, u1, u2 ∈ U w1, w2 ∈ U⊥.

Note that
(u1, w2) = (w1, u2) = 0.

Then

(Px, y) = (u1, y)

= (u1, u2 + w2)

= (u1, u2) + (u1, w2)

= (u1, u2)

= (u1, u2) + (w1, u2)

= (u1 + w1, u2)

= (x, u2)

= (z, Py).

(b) Prove that if P is self-adjoint, then P is the orthogonal projection onto U = range(P ).
(Hint: Prove v − PV ∈ ker(P ). Consider v = Pv + (v − PV ) and use the fact that
ker(P ) = range(P ∗)⊥)

Solution: We want to show that for any v ∈ V ,

Pv = projU (v).

First, recall that V = U ⊕ U⊥, and if we write

v = u+ w, u ∈ U, w ∈ U⊥,

then projU (v) = u,

Suppose P is self-adjoint, so P = P ∗. Recall that P 2 = P , so

P (v − PV ) = Pv − P 2v = 0

and thus
v − Pv ∈ ker(P ) = range(P ∗)⊥ = range(P )⊥.

Naturally we can write v as

v = Pv + (v − Pv) = u+ w

where u ∈ U = range(P ) and w ∈ U⊥ = ker(P ). Therefore

projU (v) = u = Pv

as desired. Since v was arbitrary, this means that P = projU .


