Worksheet
2/28/2020
Name:

1. In \mathbb{R}^{3}, consider point $A(1,2,3)$ and plane $(P): x-y+z=0$. Find the point on (P) that is closest to A.
see Lecture 22
2. In $M_{2 \times 2}(\mathbb{R})$, consider a subspace

$$
V=\operatorname{span}\left\{\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]\right\} .
$$

Find an orthogonal basis of V.

$$
\text { See Lecture } 23
$$

