Name: \qquad

1. Consider a linear map $G: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ given by $G(u)=u+(x+1) u^{\prime}$. Which of the following spaces is invariant under G ?
(a) $W_{1}=\left\{u \in P_{2}(\mathbb{R}): u(-1)=0\right\}$,
(b) $W_{2}=\left\{u \in P_{2}(\mathbb{R}): u(0)=0\right\}$.
(a) Let $u \in W_{1}$. We will check if $G(u)$ has to be in W_{1}. Let us write $v=G(u)$. To cheek if $v \in W_{1}$, we need to check if $v(-1)=0$. We have

$$
v=G(u)=u+(x+1) u^{\prime} .
$$

For $x=-l$,

$$
v(-1)=u(-1)+\underbrace{(-1+1)}_{=0} u^{\prime}(-1)=u(-1) \text {. }
$$

Because $u \in W_{1}$, we have $u(-1)=0$. Thus, $v(-1)=0$.
This means $v \in W_{1}$. We conclude that W_{1} is invariant under f.
(b)

Let $u \in W_{2}$. We will check if $G(u)$ has to be in W_{z}.
Let us wite $v=G(u)$. To cheek if $v \in W_{2}$, we need to check if $v(0)=0$. We have

$$
v=G(u)=u+(x+1) u^{\prime} .
$$

For $x=0$,

$$
v(0)=u(0)+(0+1) u^{\prime}(0)=u(0)+u^{\prime}(0) .
$$

Because $u \in W_{2}$, we have $u(0)=0$. Thus, $v(0)=u^{\prime}(0)$.
All we know about u is that it is a polynomial such that $u(0)=0$.

This doesn't guarantee that $u^{\prime}(0)=0$. In fact, we can give an explicit example: $u(x)=x$.
This function belongs to W_{2}. However, $G(u)$ doesn't belong to w_{2} because

$$
v(0)=G(u)(0)=u^{\prime}(0)=1 \neq 0 .
$$

We conclude that W_{2} is not invariant under W_{2}.
2. Let V be a vector space over F, and $f: V \rightarrow V$ be a linear map. Let $\lambda \in F$. Show that the set $E=\{v \in V: f(v)=\lambda v\}$ is a subspace of V and that it is invariant under f.

$$
\text { Proof given in Lecture } 13
$$

