Worksheet 2/3/2020

- 1. Consider a linear map $G : P_2(\mathbb{R}) \to P_2(\mathbb{R})$ given by G(u) = u + (x+1)u'. Which of the following spaces is invariant under G?
 - (a) $W_1 = \{ u \in P_2(\mathbb{R}) : u(-1) = 0 \},\$
 - (b) $W_2 = \{ u \in P_2(\mathbb{R}) : u(0) = 0 \}.$
- (a) Let $u \in W_1$. We will check if G(u) has to be in W_1 Let us write v = G(u). To check if $v \in W_1$, we need to check $\underline{cf \ v(-1) = 0}$. We have v = G(u) = u + (n+1)u'.

For
$$n = -l$$
,
 $v(-l) = u(-1) + (-l+1)u'(-l) = u(-1)$.
 $= 0$
Because $u \in W_1$, we have $u(-l) = 0$. Thus, $v(-1) = 0$.

(b) Let
$$u \in W_2$$
. We will check if $G(u)$ has to be in W_2
Let us write $v = G(u)$. To check if $v \in W_2$, we need to check
 $\underline{cf \ v(0) = 0}$. We have
 $v = G(u) = u + (n+1)u'$.

For
$$n=0$$
,
 $v(0) = u(0) + (0+1)u'(0) = u(0) + u'(0)$.

Because $u \in W_2$, we have u(0) = 0. Thus, v(0) = u'(0). All we know about u is that it is a polynomial such that u(0) = 0. This doesn't guarantee that u'(0) = 0. In fact, we can give an explicit example: u(x) = x. This function belongs to W_2 . However, G(u) doesn't belong to W_2 because $v(0) = G(u)(0) = u'(0) = 1 \neq 0$.

We conclude that W2 is not invariant under W2.

2. Let V be a vector space over F, and $f: V \to V$ be a linear map. Let $\lambda \in F$. Show that the set $E = \{v \in V : f(v) = \lambda v\}$ is a subspace of V and that it is invariant under f.

Proof given in Lecture 13