Name: \qquad

1. Consider a linear map $f: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ given by $f(A)=A^{T}+A$. Find a matrix representation of f.

Choose the standard basis of $M_{2 \times 2}(\mathbb{R})$:

$$
B=\{\underbrace{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \underbrace{0}_{E_{2}} 1}_{E_{1}} \begin{array}{ll}
0 & 1 \\
0
\end{array}], \underbrace{0}_{E_{3}} \begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}], \underbrace{\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]}_{E_{4}} .
$$

we have

$$
\begin{aligned}
& f\left(E_{1}\right)=f\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\right)=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]=2 E_{1} . \\
& f\left(E_{2}\right)=f\left(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\right)=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=E_{2}+E_{3} . \\
& f\left(E_{亏}\right)=\ldots=E_{2}+E_{3} \\
& f\left(E_{4}\right)=\ldots=2 E_{T} .
\end{aligned}
$$

Then

$$
\begin{aligned}
{[4]_{B} } & =\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
{\left[f\left(E_{1}\right)\right]_{B}} & {\left[f\left(\mathcal{E}_{2}\right)\right]_{B}} & {\left[f\left(\xi_{)}\right)\right]_{\beta}} & {\left[f\left(E_{4}\right)_{B}\right.} \\
1 & 1 & 1 & \mid
\end{array}\right] \\
& =\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right] .
\end{aligned}
$$

2. Consider the linear map $G: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ given by $G(u)=x u^{\prime}-u$. Is G a monomorphism, epimorphism, isomorphism or none of them? Explain your answer.

Because the dimension of the domain of G is equal to the dimension of the target set of G (equal to 3), the properties of being monomorphic, epimorphic, isomorphic are equivalent. In other words, if G is monomorphic then it is also epimorphic and isomorphic. If G is not monomuphic then it is not epimaphic nor isomorphic.

Recall: G is monomorphic if null $(G)=\{0\}$.
Led's find null (G): take $u \in$ null (G_{0}), we check of 4 has to be 0 . write $u=a x^{2}+b x+c$ where $a, b, c \in \mathbb{R}$.

$$
\begin{aligned}
C_{t}(u)=x u^{\prime}-u & =x(2 a x+b)-\left(a x^{2}+b x+c\right) \\
& =a x^{2}-c
\end{aligned}
$$

Since $u \in$ ul $(G), G(u)=0$. This means

$$
a x^{2}-c=0 \quad \forall x \in \mathbb{R} .
$$

This implies $a=c=0$ (for example by plugging $x=0$ and $x=1$). we see that there is no constraint on b.
Thus,

$$
\operatorname{null}(G)=\{u=b x: b \in \mathbb{R}\}=\operatorname{span}\{x\} \text {. }
$$

In particular, null $\left(C_{r}\right) \neq\{0\}$. Thus, G is not monomorphic.

