
MTH 342 Worksheet 2

Name: Answer Key Recitation time:

Show your work for each problem.

1. Let V be a vector space over a field F and let 0 be the zero vector in V . Below is a proof
that α0 = 0 for any scalar α ∈ F . Fill in the blanks with the axiom used at each step:

proof. Let α be a scalar and let −(α0) be the additive inverse of α0. Then

α0 = α(0 + 0) A3: Zero vector

= α0 + α0 D1: distribution over vector addition

Now add −(α0) to both sides of the equation and simplify the left-hand side:

α0 + [−(α0)] = (α0 + α0) + [−(α0)]

↓ A4: Additive inverse

0 = (α0 + α0) + [−(α0)]

We need three steps to simplify the right-hand side and complete the proof:

0 = (α0 + α0) + [−(α0)]

↓ A2: associativity of addition

0 = α0 + (α0 + [−(α0)])

↓ A4: Additive inverse

0 = α0 + 0

↓ A3: Zero vector

0 = α0.

2. Let V be a vector space. For any v ∈ V let −v denote the additive inverse of v. Prove that
−(−v) = v for any v ∈ V .
(Hint: consider v + [−v] + [−(−v)] and simplify in two different ways).

Solution: Let v ∈ V . Then by associativity of addition we have(
v + [−v]

)
+ [−(−v)] = v +

(
[−v] + [−(−v)]

)
.

The sums in each group of parentheses are sums of a vecor and its additive invers, so this
simplifies to

0 + [−(−v)] = v + 0.

Finally, we use the fact that 0 is the additive identity to conclude that

−(−v) = v.



3. Give an example of a non-empty subset S of R2 that is closed under scalar multiplication (for
all x ∈ S and for all c ∈ R, cx ∈ S), but that is not a subspace of R2.

Solution: There are many possible answers. Remember that a subset S of a vector space is
a subspace if it satisfies three axioms:

i) S is closed under addition.

ii) S is closed under scalar multiplication.

iii) S contains 0.

One example is
S = {(a, 0) : a ∈ R} ∪ {(0, b) : b ∈ R}

This set is not closed under addition, since (1, 0), (0, 1) ∈ S but

(1, 0) + (0, 1) = (1, 1) 6∈ S.

4. Let
V = {(x1, x2, x3) ∈ R3 : x3 = x1 − x2}.

a.) Prove that V is a vector space over R.

Solution: Since V ⊆ R, we only need to show that V is a subspace of R. The three
subspace axioms are

i) S contains the zero vector.

ii) S is closed under addition.

iii) S is closed under scalar multiplication.

Notice that any element of V can be written as (x1, x2, x1 − x2) for x1, x2 ∈ R.

Condition (i) is satisfied since 0 = 0− 0, so (0, 0, 0) ∈ V .

To prove (ii), let (a, b, a− b) and (c, d, c− d) be arbitrary elements of V . Then

(a, b, a− b) + (c, d, c− d) = (a+ c, b+ d, a− b+ c− d)

= (a+ c, b+ d, (a+ c)− (b+ d))

Since this sum satisfies the condition x3 = x1−x2, we have (a, b, a−b)+(c, d, c−d) ∈ V ,
so V is closed under addition.

To prove (iii), let (a, b, a− b) be an arbitrary element of V and let λ ∈ R. Then

λ(a, b, a− b) = (λa, λb, λ(a− b))
= (λa, λb, λa− λb)

Since this element satisfies the condition x3 = x1 − x2, we have λ(a, b, a− b) ∈ V , so V
is closed under scalar multiplication.



b.) Find a basis for V (and prove that it is a basis). What is the dimension of V ?

Solution: We can rewrite V as

V = {(x1, x2, x3) ∈ R3 : x3 = x1 − x2}
= {(x1, x2, x1 − x2) : x1, x2, x3 ∈ R}
= {(x1, 0, x1) + (0, x2,−x2) : x1, x2, x3 ∈ R}
= {x1(1, 0, 1) + x2(0, 1,−1) : x1, x2, x3 ∈ R}

So every element of V can be written as a linear combination of v1 = (1, 0, 1) and
v2 = (0, 1,−1). Notice that v1 and v2 each satisfy the condition x3 = x1 − x2, so
v1,v2 ∈ V . These two facts together show that

V = Span({v1,v2}).

To show B = {v1,v2} is a basis for V , we must show that they are linearly independent.
Let c1, c2 ∈ R and consider the equation

c1v1 + c2v2 = 0

↓
c1(1, 0, 1) + c2(0, 1,−1) = (0, 0, 0)

↓
(c1, c2, c1 − c2) = (0, 0, 0)

In this last equation the first coordinate gives c1 = 0 and the second coordinate gives
c2 = 0. Therefore B is linearly independent. Since B has exactly two elements, the
dimension of V is 2.

5. The set RR of functions f : R→ R with standard function addition and scalar multiplication
forms a vector space over the field F = R. Determine whether the following sets of functions in
RR are linearly independent. If a set is linearly dependent, find a nontrivial linear combination
equal to 0.

a.) {ex, ex+2}
Solution: Linearly dependent. Remember that

ex+2 = exe2 = e2 · ex.

Therefore

−e2(ex) + (ex+2) = −e2 · ex + e2 · ex

= 0

is a linear combination equal to 0 (c1 = −e2 and c2 = 1).



b.) {cos2(x), sin2(x)}
Solution: Linearly independent. Let c1, c2 ∈ R be constants and consider the
equation

c1 cos2(x) + c2 sin2(x) = 0

where this is true for all x ∈ R. To prove that the functions are linearly independent,
we must show that c1 = c2 = 0.

If x = 0 then the equation becomes

c1(1) + c2(0) = 0 → c1 = 0.

If x = π/2 then the equation becomes

c1(0) + c2(1) = 0 → c2 = 0.

c.) {cos2(x), sin2(x), 5}
Solution: Linearly dependent. Remember the trigonometric identity

cos2(x) + sin2(x) = 1.

Subtract 1 from both sides to get

cos2(x) + sin2(x)− 1 = 0.

Now we just need to write −1 as a (−1
5)5:

cos2(x) + sin2(x) + (−1
5)5 = 0

(c1 = 1, c2 = 1, and c3 = −1
5).


