Name: Answer Key
Recitation time: \qquad
Show your work for each problem.

1. Let V be a vector space over a field F and let $\mathbf{0}$ be the zero vector in V. Below is a proof that $\alpha \mathbf{0}=\mathbf{0}$ for any scalar $\alpha \in F$. Fill in the blanks with the axiom used at each step: proof. Let α be a scalar and let $-(\alpha \mathbf{0})$ be the additive inverse of $\alpha \mathbf{0}$. Then

$$
\begin{aligned}
\alpha \mathbf{0} & =\alpha(\mathbf{0}+\mathbf{0}) & & \underline{\text { A3: Zero vector }} \\
& =\alpha \mathbf{0}+\alpha \mathbf{0} & & \underline{\text { D1: distribution over vector addition }}
\end{aligned}
$$

Now add $-(\alpha \mathbf{0})$ to both sides of the equation and simplify the left-hand side:

$$
\begin{aligned}
& \alpha \mathbf{0}+[-(\alpha \mathbf{0})]=(\alpha \mathbf{0}+\alpha \mathbf{0})+[-(\alpha \mathbf{0})] \\
& \downarrow \\
& \mathbf{0}=(\alpha \mathbf{0}+\alpha \mathbf{0})+[-(\alpha \mathbf{0})] \quad \text { A4: Additive inverse } \\
&
\end{aligned}
$$

We need three steps to simplify the right-hand side and complete the proof:

$$
\begin{aligned}
& \mathbf{0}=(\alpha \mathbf{0}+\alpha \mathbf{0})+[-(\alpha \mathbf{0})] \\
& \quad \downarrow \\
& \mathbf{0}=\alpha \mathbf{0}+(\alpha \mathbf{0}+[-(\alpha \mathbf{0})]) \\
& \quad \downarrow \\
& \mathbf{0}=\alpha \mathbf{0}+\mathbf{0} \\
& \quad \downarrow \\
& \mathbf{0}=\alpha \mathbf{0}
\end{aligned}
$$

A2: associativity of addition

A4: Additive inverse

A3: Zero vector
2. Let V be a vector space. For any $\mathbf{v} \in V$ let $-\mathbf{v}$ denote the additive inverse of \mathbf{v}. Prove that $-(-\mathbf{v})=\mathbf{v}$ for any $\mathbf{v} \in V$.
(Hint: consider $\mathbf{v}+[-\mathbf{v}]+[-(-\mathbf{v})]$ and simplify in two different ways).
Solution: Let $\mathbf{v} \in V$. Then by associativity of addition we have

$$
(\mathbf{v}+[-\mathbf{v}])+[-(-\mathbf{v})]=\mathbf{v}+([-\mathbf{v}]+[-(-\mathbf{v})])
$$

The sums in each group of parentheses are sums of a vecor and its additive invers, so this simplifies to

$$
\mathbf{0}+[-(-\mathbf{v})]=\mathbf{v}+\mathbf{0}
$$

Finally, we use the fact that $\mathbf{0}$ is the additive identity to conclude that

$$
-(-\mathbf{v})=\mathbf{v}
$$

3. Give an example of a non-empty subset S of \mathbb{R}^{2} that is closed under scalar multiplication (for all $\mathbf{x} \in S$ and for all $c \in \mathbb{R}, c \mathbf{x} \in S$), but that is not a subspace of \mathbb{R}^{2}.
Solution: There are many possible answers. Remember that a subset S of a vector space is a subspace if it satisfies three axioms:
i) S is closed under addition.
ii) S is closed under scalar multiplication.
iii) S contains 0 .

One example is

$$
S=\{(a, 0): a \in \mathbb{R}\} \cup\{(0, b): b \in \mathbb{R}\}
$$

This set is not closed under addition, since $(1,0),(0,1) \in S$ but

$$
(1,0)+(0,1)=(1,1) \notin S .
$$

4. Let

$$
V=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{3}=x_{1}-x_{2}\right\} .
$$

a.) Prove that V is a vector space over \mathbb{R}.

Solution: Since $V \subseteq \mathbb{R}$, we only need to show that V is a subspace of \mathbb{R}. The three subspace axioms are
i) S contains the zero vector.
ii) S is closed under addition.
iii) S is closed under scalar multiplication.

Notice that any element of V can be written as $\left(x_{1}, x_{2}, x_{1}-x_{2}\right)$ for $x_{1}, x_{2} \in \mathbb{R}$.

Condition (i) is satisfied since $0=0-0$, so $(0,0,0) \in V$.
To prove (ii), let $(a, b, a-b)$ and $(c, d, c-d)$ be arbitrary elements of V. Then

$$
\begin{aligned}
(a, b, a-b)+(c, d, c-d) & =(a+c, b+d, a-b+c-d) \\
& =(a+c, b+d,(a+c)-(b+d))
\end{aligned}
$$

Since this sum satisfies the condition $x_{3}=x_{1}-x_{2}$, we have $(a, b, a-b)+(c, d, c-d) \in V$, so V is closed under addition.
To prove (iii), let $(a, b, a-b)$ be an arbitrary element of V and let $\lambda \in \mathbb{R}$. Then

$$
\begin{aligned}
\lambda(a, b, a-b) & =(\lambda a, \lambda b, \lambda(a-b)) \\
& =(\lambda a, \lambda b, \lambda a-\lambda b)
\end{aligned}
$$

Since this element satisfies the condition $x_{3}=x_{1}-x_{2}$, we have $\lambda(a, b, a-b) \in V$, so V is closed under scalar multiplication.
b.) Find a basis for V (and prove that it is a basis). What is the dimension of V ? Solution: We can rewrite V as

$$
\begin{aligned}
V & =\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{3}=x_{1}-x_{2}\right\} \\
& =\left\{\left(x_{1}, x_{2}, x_{1}-x_{2}\right): x_{1}, x_{2}, x_{3} \in \mathbb{R}\right\} \\
& =\left\{\left(x_{1}, 0, x_{1}\right)+\left(0, x_{2},-x_{2}\right): x_{1}, x_{2}, x_{3} \in \mathbb{R}\right\} \\
& =\left\{x_{1}(1,0,1)+x_{2}(0,1,-1): x_{1}, x_{2}, x_{3} \in \mathbb{R}\right\}
\end{aligned}
$$

So every element of V can be written as a linear combination of $\mathbf{v}_{1}=(1,0,1)$ and $\mathbf{v}_{2}=(0,1,-1)$. Notice that \mathbf{v}_{1} and \mathbf{v}_{2} each satisfy the condition $x_{3}=x_{1}-x_{2}$, so $\mathbf{v}_{1}, \mathbf{v}_{2} \in V$. These two facts together show that

$$
V=\operatorname{Span}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}\right) .
$$

To show $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a basis for V, we must show that they are linearly independent. Let $c_{1}, c_{2} \in \mathbb{R}$ and consider the equation

$$
\begin{aligned}
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2} & =\mathbf{0} \\
& \downarrow \\
c_{1}(1,0,1)+c_{2}(0,1,-1) & =(0,0,0) \\
& \downarrow \\
\left(c_{1}, c_{2}, c_{1}-c_{2}\right) & =(0,0,0)
\end{aligned}
$$

In this last equation the first coordinate gives $c_{1}=0$ and the second coordinate gives $c_{2}=0$. Therefore B is linearly independent. Since B has exactly two elements, the dimension of V is 2 .
5. The set $\mathbb{R}^{\mathbb{R}}$ of functions $f: \mathbb{R} \rightarrow \mathbb{R}$ with standard function addition and scalar multiplication forms a vector space over the field $F=\mathbb{R}$. Determine whether the following sets of functions in $\mathbb{R}^{\mathbb{R}}$ are linearly independent. If a set is linearly dependent, find a nontrivial linear combination equal to 0 .
a.) $\left\{e^{x}, e^{x+2}\right\}$

Solution: Linearly dependent. Remember that

$$
e^{x+2}=e^{x} e^{2}=e^{2} \cdot e^{x}
$$

Therefore

$$
\begin{aligned}
-e^{2}\left(e^{x}\right)+\left(e^{x+2}\right) & =-e^{2} \cdot e^{x}+e^{2} \cdot e^{x} \\
& =0
\end{aligned}
$$

is a linear combination equal to $0\left(c_{1}=-e^{2}\right.$ and $\left.c_{2}=1\right)$.
b.) $\left\{\cos ^{2}(x), \sin ^{2}(x)\right\}$

Solution: Linearly independent. Let $c_{1}, c_{2} \in \mathbb{R}$ be constants and consider the equation

$$
c_{1} \cos ^{2}(x)+c_{2} \sin ^{2}(x)=0
$$

where this is true for all $x \in \mathbb{R}$. To prove that the functions are linearly independent, we must show that $c_{1}=c_{2}=0$.
If $x=0$ then the equation becomes

$$
c_{1}(1)+c_{2}(0)=0 \quad \rightarrow \quad c_{1}=0 .
$$

If $x=\pi / 2$ then the equation becomes

$$
c_{1}(0)+c_{2}(1)=0 \quad \rightarrow \quad c_{2}=0 .
$$

c.) $\left\{\cos ^{2}(x), \sin ^{2}(x), 5\right\}$

Solution: Linearly dependent. Remember the trigonometric identity

$$
\cos ^{2}(x)+\sin ^{2}(x)=1
$$

Subtract 1 from both sides to get

$$
\cos ^{2}(x)+\sin ^{2}(x)-1=0
$$

Now we just need to write -1 as a $\left(-\frac{1}{5}\right) 5$:

$$
\cos ^{2}(x)+\sin ^{2}(x)+\left(-\frac{1}{5}\right) 5=0
$$

$\left(c_{1}=1, c_{2}=1\right.$, and $\left.c_{3}=-\frac{1}{5}\right)$.

