\qquad
Show your work for each problem.

1. Does there exist a linear map $f: \mathbb{R}^{4} \rightarrow \mathbb{R}$ with null space

$$
N=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}=3 x_{2}, x_{3}=x_{4}\right\} ?
$$

If yes, give an example of such a linear map. If no, give a proof.
Solution: No such linear map exists. Notice that we can rewrite N as

$$
\begin{aligned}
N & =\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}=3 x_{2}, x_{3}=x_{4}\right\} \\
& =\left\{\left(3 x_{2}, x_{2}, x_{3}, x_{3}\right): x_{2}, x_{3} \in \mathbb{R}\right\} \\
& =\left\{x_{2}(3,1,0,0)+x_{3}(0,0,1,1): x_{2}, x_{3} \in \mathbb{R}\right\} .
\end{aligned}
$$

It is not difficult to show that N is a subspace of \mathbb{R}^{4} with basis $\{(3,1,0,0),(0,0,1,1)\}$, so $\operatorname{dim}(N)=2$.
Suppose N is the null space of $f: \mathbb{R}^{4} \rightarrow \mathbb{R}$. Then

$$
\operatorname{nullity}(f)=\operatorname{dim}(N)=2
$$

By the rank nullity theorem we must have

$$
\begin{aligned}
\operatorname{rank}(f)+\operatorname{nullity}(f) & =\operatorname{dim}\left(\mathbb{R}^{4}\right) \\
& \downarrow \\
\operatorname{rank}(f)+2 & =4 \\
& \downarrow \\
\operatorname{rank}(f) & =2
\end{aligned}
$$

But this is impossible, because f maps to a 1-dimensional space, so $\operatorname{rank}(f)$ is less than or equal to 1 . Therefore our assumption that N is the null space of f was incorrect.
2. Let

$$
\begin{aligned}
U & =\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}=x_{2}=x_{3}\right\} \\
V & =\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}+x_{3}=x_{4}, 2 x_{2}=x_{4}\right\} .
\end{aligned}
$$

a.) Find bases for U and V.

Solution: Rewrite U :

$$
\begin{aligned}
U & =\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}=x_{2}=x_{3}\right\} \\
& =\left\{\left(x_{1}, x_{1}, x_{1}, x_{4}\right): x_{1}, x_{4} \in \mathbb{R}\right\} \\
& =\left\{x_{1}(1,1,1,0)+x_{4}(0,0,0,1): x_{1}, x_{4} \in \mathbb{R}\right\}
\end{aligned}
$$

so a basis for U is $\mathcal{B}_{1}=\{(1,1,1,0),(0,0,0,1)\}$. Note that our rewriting of U shows that $U=\operatorname{span}\left(\mathcal{B}_{1}\right)$, and it is not difficult to show that \mathcal{B}_{1} is linearly independent. I have omitted the details.
Now rewrite V :

$$
\begin{aligned}
V & =\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}+x_{3}=x_{4}, 2 x_{2}=x_{4}\right\} \\
& =\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{3}=2 x_{2}-x_{1}, 2 x_{2}=x_{4}\right\} \\
& =\left\{\left(x_{1}, x_{2}, 2 x_{2}-x_{1}, 2 x_{2}\right): x_{1}, x_{2} \in \mathbb{R}\right\} \\
& =\left\{x_{1}(1,0,-1,0)+x_{2}(0,1,2,2): x_{1}, x_{2} \in \mathbb{R}\right\}
\end{aligned}
$$

so a basis for V is $\mathcal{B}_{2}=\{(1,0,-1,0),(0,1,2,2)\}$.
b.) Find a basis for $U+V$. Is $U+V$ a direct sum of U and V ?

Solution: Consider the set $\mathcal{B}_{1} \cup \mathcal{B}_{2}$ where \mathcal{B}_{1} and \mathcal{B}_{2} are the bases for U and V as given in the solution to part (a). Form a matrix A with the elements of $\mathcal{B}_{1} \cup \mathcal{B}_{2}$ as rows:

$$
A=\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 2 & 2
\end{array}\right]
$$

Now find the reduced row echelon form of A :

$$
A \xrightarrow{R R E F}\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The rows of this reduced matrix represent a basis for $U+V$:

$$
\mathcal{B}=\{(1,1,1,0),(0,0,0,1),(1,0,-1,0)\} .
$$

Then $\operatorname{dim}(U+V)=3$ and from part (a) we can see that $\operatorname{dim}(U)=\operatorname{dim}(V)=2$. Therefore

$$
\operatorname{dim}(U+V)=3 \neq 4=\operatorname{dim}(U)+\operatorname{dim}(V),
$$

so $U+V$ is not a direct sum of U and V.
3. Let $V=\mathbb{R}^{4}$ and

$$
W=\left\{a+b x+c x^{2}: a, b, c \in \mathbb{R}, 2 a+2 b-c=0\right\}
$$

viewed as real vector spaces.
a.) Construct a linear map $f: V \rightarrow W$ with rank 2 .

Solution: There are many possible answers here.
Let $(a, b, c, d) \in \mathbb{R}^{4}$. The easiest way to ensure f has rank less than or equal to 2 is to only use 2 components (say a and b) in the output. For example, we could choose

$$
f(a, b, c, d)=a+b x+(2 a+2 b) x^{2}
$$

Notice that the $(2 a+2 b) x^{2}$ term is included so that the image of f is contained in W. We will see by part (b) that $\operatorname{dim}(\operatorname{range}(f))=2, \operatorname{so} \operatorname{rank}(f)=2$.
b.) Find a basis for range (f).

Solution: This answer depends on your answer to part (a). In our case,

$$
\begin{align*}
\operatorname{range}(f) & =\{f(a, b, c, d): a, b, c, d \in \mathbb{R}\} \\
& =\left\{a+b x+(2 a+2 b) x^{2}: a, b \in \mathbb{R}\right\} \\
& =\left\{a\left(1+2 x^{2}\right)+b\left(x+2 x^{2}\right): a, b \in \mathbb{R}\right\} \tag{*}
\end{align*}
$$

We propose $B_{1}=\left\{1+2 x^{2}, x+2 x^{2}\right\}$ as a basis for range (f). Notice that

$$
\begin{aligned}
& f(1,0,0,0)=1+2 x^{2} \\
& f(0,1,0,0)=x+2 x^{2}
\end{aligned}
$$

so $B_{1} \subset \operatorname{range}(f)$. We can see from $(*)$ that range $(f)=\operatorname{span}\left(B_{1}\right)$.
Finally, we need to check that B_{1} is linearly independent. Let $c_{1}, c_{2} \in \mathbb{R}$ and suppose

$$
c_{1}\left(1+2 x^{2}\right)+c_{2}\left(x+2 x^{2}\right)=0 .
$$

Setting $x=0$ gives $c_{1}=0$, so the above equation becomes

$$
c_{2}\left(x+2 x^{2}\right)=0 .
$$

Setting $x=1$ gives $3 c_{2}=0$, so $c_{2}=0$. Therefore the functions are linearly independent.
c.) What is the nullity of f ?

Solution: This answer does not depend on your answer to part (a).
By the rank-nullity theorem

$$
\begin{aligned}
\operatorname{rank}(f)+\operatorname{nullity}(f) & =\operatorname{dim}(V) \\
& \downarrow \\
2+\operatorname{nullity}(f) & =4 \\
& \downarrow \\
\operatorname{nullity}(f) & =2
\end{aligned}
$$

d.) Find a basis for $\operatorname{null}(f)$.

Solution: This answer depends on your answer to part (a).
We want to find all $(a, b, c, d) \in \mathbb{R}$ such that

$$
\begin{aligned}
0 & =f(a, b, c, d) \\
& =a+b x+(2 a+2 b) x^{2} \\
& =a(1)+b(x)+(2 a+2 b) x^{2} .
\end{aligned}
$$

Since the set $\left\{1, x, x^{2}\right\}$ is linearly independent, the only way for this to be true is if $a=b=0$. Therefore $(a, b, c, d) \in \operatorname{null}(f)$ if and only if $a=b=0$. That is,

$$
\operatorname{null}(f)=\{(0,0, c, d): c, d \in \mathbb{R}\}
$$

It is easy to check that $B_{2}=\{(0,0,1,0),(0,0,0,1)\}$ is a basis for $\operatorname{null}(f)$.
4. Find a vector space V with subspaces U_{1}, U_{2}, and W such that
a.) $U_{1}+W=U_{2}+W$, but $U_{1} \neq U_{2}$.

Solution: Let

$$
\begin{aligned}
V & =\mathbb{R} \\
U_{1} & =\mathbb{R} \\
U_{2} & =\{0\} \\
W & =\mathbb{R} .
\end{aligned}
$$

Then

$$
U_{1}+W=\mathbb{R}=U_{2}+W
$$

but

$$
U_{1}=\mathbb{R} \neq\{0\}=U_{2}
$$

b.) $U_{1} \oplus W=U_{2} \oplus W$, but $U_{1} \neq U_{2}$.

Solution: Notice that a valid solution to part (b) is also a solution to part (a).
Let

$$
\begin{aligned}
V & =\mathbb{R}^{2} \\
U_{1} & =\{(x, 0): x \in \mathbb{R}\} \\
U_{2} & =\{(0, y): y \in \mathbb{R}\} \\
W & =\{(z, z): z \in \mathbb{R}\} .
\end{aligned}
$$

It is not hard to check that

$$
U_{1}+W=\operatorname{span}\{(1,0),(1,1)\}=\mathbb{R}^{2}
$$

and

$$
U_{2}+W=\operatorname{span}\{(0,1),(1,1)\}=\mathbb{R}^{2}
$$

so $U_{1}+W=U_{2}+W$.
Now notice that if $(a, b) \in U_{1} \cap W$ then $b=0$ (since $\left.(a, b) \in U_{1}\right)$ and $a=b=0$ (since $(a, b) \in W)$. Therefore $U_{1} \cap W=\{0\}$, so $U_{1}+W$ is a direct sum of U_{1} and W. A similar argument shows that $U_{2}+W$ is a direct sum of U_{2} and W.
Finally, notice that $U_{1} \neq U_{2}$, since for example $(1,0) \in U_{1}$ but $(1,0) \notin U_{2}$.

