MTH 342 Worksheet 5

Name: Answer Key

Recitation time:

\qquad

Show your work for each problem.

1. Consider the basis

$$
B=\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}
$$

for \mathbb{R}^{3}. Use a change-of-basis matrix to find the coordinates of $\left(\begin{array}{ll}1 & 2\end{array} 3\right)^{T}$ with respect to the basis B.
Solution: Let E be the standard basis for \mathbb{R}^{3}. We want to find a matrix that converts vectors in standard coordinates (i.e., coordinates with respect to E) into vectors in B coordinates. It is easy to go the opposite direction. The matrix that converts B coordinates to standard coordinates is

$$
[\mathrm{idd}]_{E, B}=\left[\begin{array}{rrr}
1 & 0 & 1 \\
1 & -1 & 1 \\
0 & 2 & 1
\end{array}\right]
$$

To get the matrix that converts E coordinates to B coordinates, simply find the inverse:

$$
\begin{aligned}
{[\mathrm{idd}]_{B, E} } & =[\mathrm{id}]_{E, B}^{-1} \\
& =\left[\begin{array}{rrr}
1 & 0 & 1 \\
1 & -1 & 1 \\
0 & 2 & 1
\end{array}\right]^{-1} \\
& =\left[\begin{array}{rrr}
3 & -2 & -1 \\
1 & -1 & 0 \\
-2 & 2 & 1
\end{array}\right]
\end{aligned}
$$

We can now find the coordinates of $(1,2,3)^{T}$ with respect to B using matrix multiplication:

$$
\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]_{B}=\left[\begin{array}{rrr}
3 & -2 & -1 \\
1 & -1 & 0 \\
-2 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{r}
-4 \\
-5 \\
1
\end{array}\right]
$$

This means that

$$
\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=-4\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]-1\left[\begin{array}{r}
0 \\
-1 \\
2
\end{array}\right]+5\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

which can easily be verified.
2. Let V, W be vector spaces over a field F and let $f: V \rightarrow W$ and $g: W \rightarrow V$ be linear maps such that

$$
g \circ f(\mathbf{v})=\mathbf{v} \quad \text { for all } \mathbf{v} \in V
$$

(a) Prove that f is a monomorphism.

Solution: We want to show that f is injective. That is, we want to show that if $f\left(v_{1}\right)=f\left(v_{2}\right)$ for some $v_{1}, v_{2} \in V$, then $v_{1}=v_{2}$.
Let $v_{1}, v_{2} \in V$ and suppose that $f\left(v_{1}\right)=f\left(v_{2}\right)$. Applying g to both sides of this equation gives

$$
\begin{aligned}
& f\left(v_{1}\right)=f\left(v_{2}\right) \\
& \downarrow \\
& g \circ f\left(v_{1}\right)=g \circ f\left(v_{2}\right) \\
& \downarrow \\
& v_{1}=v_{2},
\end{aligned}
$$

so f is injective and hence a monomorphism.
(b) Prove that g is an epimorphism.

Solution: Let v be an arbitrary element of V. To prove that g is an epimorphism, we must show that there exists some $w \in W$ such that $g(w)=v$.
Let $w=f(v)$.

$$
\begin{aligned}
g(w)= & =g(f(v)) \\
& =g \circ f(v) \\
& =v,
\end{aligned}
$$

so g is an epimorphism.
(c) What can we conclude about the relationship between $\operatorname{dim}(V)$ and $\operatorname{dim}(W)$?

Solution: We can conclude that $\operatorname{dim}(W) \geq \operatorname{dim}(V)$.
We will use a proof by contradiction. In order to reach a contradiction, assume that $\operatorname{dim}(W)<\operatorname{dim}(V)$. The rank-nullity theorem tells us

$$
\begin{array}{rlrl}
\operatorname{rank}(f)+\operatorname{nullity}(f) & =\operatorname{dim}(V) & \\
& \downarrow & & \\
\operatorname{nullity}(f) & =\operatorname{dim}(V)-\operatorname{rank}(f) & & \\
& \geq \operatorname{dim}(V)-\operatorname{dim}(W) & & \text { since } \operatorname{rank}(f) \leq \operatorname{dim}(W) \\
& >0 & & \text { since } \operatorname{dim}(W)<\operatorname{dim}(V) \text { by assumption }
\end{array}
$$

Therefore f is not injective (i.e., not a monomorphism), contradicting part (a).
A similar proof can be constructed using the rank-nullity theorem applied to g.
3. Let

$$
A=\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 2 & 0 \\
0 & -1 & 4
\end{array}\right] .
$$

The eigenvalues of A are $\lambda=1,2,4$. Let

$$
\begin{aligned}
& E_{1}=\left\{v \in \mathbb{R}^{3}: A v=v\right\} \\
& E_{2}=\left\{v \in \mathbb{R}^{3}: A v=2 v\right\} \\
& E_{4}=\left\{v \in \mathbb{R}^{3}: A v=4 v\right\}
\end{aligned}
$$

(a) Find bases for E_{1}, E_{2}, and E_{4}.

Solution: Given any $\lambda \in \mathbb{R}$, the equation $A v=\lambda v$ can be rewritten as

$$
\begin{aligned}
& A v=\lambda v \\
& \downarrow \\
& A v-\lambda v=0 \\
& \downarrow \\
&(A-\lambda I) v=0
\end{aligned}
$$

Where I is the identity matrix.
To find E_{1}, we solve the equation $(A-I) v=0$ for $v=\left(v_{1}, v_{2}, v_{3}\right)$. That is,

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 2 & 0 \\
0 & -1 & 4
\end{array}\right]-\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\downarrow\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & -1 & 3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Write this is equation in augmented form and use row reduction:

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 3 & 0
\end{array}\right] \xrightarrow{R_{2}-R_{1} \rightarrow R_{2}}\left[\begin{array}{ccc|c}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & -1 & 3 & 0
\end{array}\right] } \\
& \xrightarrow{R_{3}+R_{1} \rightarrow R_{3}}\left[\begin{array}{lll|l}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 3 & 0
\end{array}\right] \\
& \xrightarrow{\frac{1}{3} R_{3} \rightarrow R_{3}}\left[\begin{array}{ccc|c}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Therefore $v_{2}=v_{3}=0$ and v_{1} is a free variable, so

$$
E_{1}=\left\{\left[\begin{array}{c}
v_{1} \\
0 \\
0
\end{array}\right]: v_{1} \in \mathbb{R}\right\} .
$$

Then E_{1} has basis

$$
B_{1}=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\} .
$$

For E_{2} and $E_{4} \mathrm{I}$ will not write all of the row reduction details.

The augmented matrix for E_{2} is

$$
\left[\begin{array}{ccc|c}
1-2 & 1 & 0 & 0 \\
0 & 2-2 & 0 & 0 \\
0 & -1 & 4-2 & 0
\end{array}\right]=\left[\begin{array}{ccc|c}
-1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & -1 & 2 & 0
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccc|c}
1 & 0 & -2 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore $v_{1}=2 v_{3}$ and $v_{2}=2 v_{3}$, where v_{3} is a free variable. Thus

$$
E_{2}=\left\{\left[\begin{array}{c}
2 v_{3} \\
2 v_{3} \\
v_{3}
\end{array}\right]: v_{3} \in \mathbb{R}\right\}
$$

has basis

$$
B_{2}=\left\{\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right]\right\}
$$

The augmented matrix for E_{4} is

$$
\left[\begin{array}{ccc|c}
1-4 & 1 & 0 & 0 \\
0 & 2-4 & 0 & 0 \\
0 & -1 & 4-4 & 0
\end{array}\right]=\left[\begin{array}{ccc|c}
-3 & 1 & 0 & 0 \\
0 & -2 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore $v_{1}=v_{2}=0$ and v_{3} is a free variable, so

$$
E_{4}=\left\{\left[\begin{array}{c}
0 \\
0 \\
v_{3}
\end{array}\right]: v_{3} \in \mathbb{R}\right\}
$$

has basis

$$
B_{4}=\left\{\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\} .
$$

(b) Is the sum $E_{1}+E_{2}+E_{4}$ a direct sum?

Solution: Yes. Let

$$
B=B_{1} \cup B_{2} \cup B_{3}=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\},
$$

so $E_{1}+E_{2}+E_{4}=\operatorname{span}(B)$. Then

$$
\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right]-\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

and thus $E_{1}+E_{2}+E_{4}$ contains the standard basis

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

for \mathbb{R}^{3}. Therefore $E_{1}+E_{2}+E_{4}=\mathbb{R}^{3}$. Calculating dimensions gives

$$
\begin{aligned}
\operatorname{dim}\left(E_{1}\right)+\operatorname{dim}\left(E_{2}\right)+\operatorname{dim}\left(E_{4}\right) & =1+1+1 \\
& =3 \\
& =\operatorname{dim}\left(\mathbb{R}^{3}\right)
\end{aligned}
$$

so $E_{1}+E_{2}+E_{4}$ is a direct sum of E_{1}, E_{2}, and E_{4}, and can be written as $E_{1} \oplus E_{2} \oplus E_{4}$.
4. Let

$$
B=\{2+2 x, 3+x\} \quad \text { and } \quad C=\{1,1+x\}
$$

which are bases for $P_{1}(\mathbb{R})$. Find the change of basis matrix that converts coordinates with respect to B into coordinates with respect to C (i.e., find $[\mathrm{id}]_{C, B}$).
Solution: Let $E=\{1, x\}$ which is a basis for $P_{1}(\mathbb{R})$. We will use the following fact:

$$
[\mathrm{id}]_{C, B}=[\mathrm{id}]_{C, E}[\mathrm{id}]_{E, B} .
$$

We now need to calculate these two matrices. Note that writing the elements of C in E coordinates gives

$$
\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}
$$

so

$$
\begin{aligned}
{[\mathrm{id}]_{C, E} } & =[\mathrm{id}]_{E, C}^{-1} \\
& =\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]^{-1} \\
& =\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right] .
\end{aligned}
$$

Likewise, the elements of B written in E coordinates are

$$
\left\{\left[\begin{array}{l}
2 \\
2
\end{array}\right],\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right\}
$$

so

$$
[\mathrm{id}]_{E, B}=\left[\begin{array}{ll}
2 & 3 \\
2 & 1
\end{array}\right]
$$

Therefore

$$
\begin{aligned}
{[\mathrm{id}]_{C, B} } & =[\mathrm{id}]_{C, E}[\mathrm{idd}]_{E, B} \\
& =\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & 3 \\
2 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 2 \\
2 & 1
\end{array}\right] .
\end{aligned}
$$

