Name: Answer Key

Recitation time: \qquad
Show your work for each problem.
Let V be a vector space over a field F. Recall that an inner product is an operator $(\cdot, \cdot): V \times V \rightarrow F$ satisfying the following properties:

- Positivity: $(v, v) \geq 0$ for all $v \in V$.
- Definiteness: $(v, v)=0$ if and only if $v=0$.
- Additivity in the first component: $(u+v, w)=(u, w)+(v, w)$ for all $u, v, w \in V$.
- Homogeneity in the first component: $(\lambda u, v)=\lambda(u, v)$ for all $\lambda \in F$ and $u, v \in V$.
- Conjugate symmetry: $(u, v)=\overline{(v, u)}$ for all $u, v \in V$.

1. On \mathbb{R}^{3} define the operator

$$
(x, y)=x_{1} y_{1}+x_{3} y_{3}
$$

where $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ and $y=\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]$.
(a) Prove that this is not an inner product on \mathbb{R}^{3}.

Solution: Let

$$
x=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] .
$$

Then

$$
(x, x)=0,
$$

but $x \neq 0$, so this operator is not definite, and hence not an inner product.
(b) Which properties of an inner product does this operator satisfy?

Solution: All other properties (besides definiteness) are satisfied. Let u, v, w be arbitrary elements of \mathbb{R}^{3} written as

$$
u=\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right], \quad v=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right], \quad w=\left[\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right]
$$

and let $\lambda \in F=\mathbb{R}$.

- Positivity:

$$
(v, v)=\left(v_{1}\right)^{2}+\left(v_{3}\right)^{2} \geq 0+0 \geq 0
$$

- Additivity in the first component:

$$
\begin{aligned}
(u+v, w) & =\left(u_{1}+v_{1}\right) w_{1}+\left(u_{3}+v_{3}\right) w_{3} \\
& =u_{1} w_{1}+v_{1} w_{1}+u_{3} w_{3}+v_{3} w_{3} \\
& =\left(u_{1} w_{1}+u_{3} w_{3}\right)+\left(v_{1} w_{1}+v_{3} w_{3}\right) \\
& =(u, w)+(v, w) .
\end{aligned}
$$

- Homogeneity in the first component:

$$
\begin{aligned}
(\lambda u, v) & =\left(\lambda u_{1}\right) v_{1}+\left(\lambda u_{3}\right) v_{3} \\
& =\lambda\left(u_{1} v_{1}+u_{3} v_{3}\right) \\
& =\lambda(u, v)
\end{aligned}
$$

- Conjugate symmetry: Note that for any real number a, the complex conjugate is $\bar{a}=a$. Now

$$
\begin{aligned}
(u, v) & =u_{1} v_{1}+u_{3} v_{3} \\
& =v_{1} u_{1}+v_{3} u_{3} \\
& =\overline{v_{1} u_{1}+v_{3} u_{3}} \quad \text { since } v_{1} u_{1}+v_{3} u_{3} \text { is a real number } \\
& =\overline{(v, u)} .
\end{aligned}
$$

2. On \mathbb{C}^{2} let $u_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $u_{2}=\left[\begin{array}{l}0 \\ i\end{array}\right]$. Suppose (\cdot, \cdot) is an inner product on \mathbb{C}^{2} that satisfies

$$
\left(u_{1}, u_{1}\right)=1, \quad\left(u_{1}, u_{2}\right)=-i, \quad\left(u_{2}, u_{2}\right)=2 .
$$

Compute $\left(\left[\begin{array}{l}1 \\ i\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]\right)$.
(Hint: you will need to use conjugate linearity in the second component.)
Solution: We start by writing the each component in terms of u_{1} and u_{2} :

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
i
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
i
\end{array}\right]=u_{1}+u_{2}} \\
& {\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]+i\left[\begin{array}{l}
0 \\
i
\end{array}\right]=u_{1}+i u_{2}}
\end{aligned}
$$

We can now calculate

$$
\begin{aligned}
\left(\left[\begin{array}{c}
1 \\
i
\end{array}\right],\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right) & =\left(u_{1}+u_{2}, u_{1}+i u_{2}\right) \\
& =\left(u_{1}, u_{1}+i u_{2}\right)+\left(u_{2}, u_{1}+i u_{2}\right) \quad \text { (linearity in the first component) } \\
& =\left(u_{1}, u_{1}\right)+\bar{i}\left(u_{1}, u_{2}\right)+\left(u_{2}, u_{1}\right)+\bar{i}\left(u_{2}, u_{2}\right) \quad\binom{\text { conjugate linearity in }}{\text { the second component }} \\
& =\left(u_{1}, u_{1}\right)+\bar{i}\left(u_{1}, u_{2}\right)+\overline{\left(u_{1}, u_{2}\right)}+\bar{i}\left(u_{2}, u_{2}\right) \quad \text { (conjugate symmetry) } \\
& =\left(u_{1}, u_{1}\right)-i\left(u_{1}, u_{2}\right)+\overline{\left(u_{1}, u_{2}\right)}-i\left(u_{2}, u_{2}\right) \\
& =1-i(-i)+i-i(2) \\
& =1-1+i-2 i \\
& =-i .
\end{aligned}
$$

3. Let V be an inner product space with inner product (\cdot, \cdot), and let $v_{1}, v_{2} \in V$. Prove that if

$$
\left(v_{1}, w\right)=\left(v_{2}, w\right)
$$

for all $w \in V$, then $v_{1}=v_{2}$.
Solution: Rewrite the equation as

$$
\left(v_{1}, w\right)-\left(v_{2}, w\right)=0 .
$$

Now we can use the definition of an inner product (additivity in the first component) to get

$$
\begin{aligned}
\left(v_{1}, w\right)-\left(v_{2}, w\right) & =0 \\
& \downarrow \\
\left(v_{1}-v_{2}, w\right) & =0
\end{aligned}
$$

for all $w \in V$. If we let $w=v_{1}-v_{2}$, then this becomes

$$
\left(v_{1}-v_{2}, v_{1}-v_{2}\right)=0 .
$$

By the definition of an inner product (definiteness), we get

$$
v_{1}-v_{2}=0 .
$$

Adding v_{2} to both sides gives $v_{1}=v_{2}$.
4. Let a and b be integers and suppose that

$$
\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right],\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]\right)=x_{1} y_{1}+a x_{1} y_{2}+b x_{2} y_{1}+x_{2} y_{2}
$$

defines an inner product on \mathbb{R}^{2}.
(a) Prove that $a=b$. (Hint: Find vectors $u, v \in \mathbb{R}^{2}$ such that $(u, v)=a$ and $(v, u)=b$. Why does this show that $a=b$?)
Solution: Following the hint, let

$$
u=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { and } \quad v=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Then $(u, v)=a$ and $(v, u)=b$. Now we have by conjugate symmetry that

$$
\begin{aligned}
a & =(u, v) \\
& =\overline{(v, u)} .
\end{aligned}
$$

Since this is a real inner product space, the inner product of two vectors is a real number. Since all real numbers are equal to their complex conjugate, we get

$$
\begin{aligned}
a & =(u, v) \\
& =\overline{(v, u)} \\
& =(v, u) \\
& =b .
\end{aligned}
$$

(b) What are the possible values of a and b ?

Hint: calculate $\left(\left[\begin{array}{c}-a \\ 1\end{array}\right],\left[\begin{array}{c}-a \\ 1\end{array}\right]\right)$.
Solution: We must have $a=0$ and $b=0$. From the hint,

$$
\begin{aligned}
\left(\left[\begin{array}{c}
-a \\
1
\end{array}\right],\left[\begin{array}{c}
-a \\
1
\end{array}\right]\right) & =(-a)^{2}+a(-a)+b(-a)+1 \\
& =a^{2}-a^{2}-a b+1 \\
& =-a b+1 \\
& =-a^{2}+1 \quad \text { since } a=b \text { by part (a). }
\end{aligned}
$$

We want this to be an inner product, so we need to have $(v, v)>0$ for any nonzero $v \in \mathbb{R}^{2}$ (definiteness). Therefore

$$
-a^{2}+1>0 .
$$

Adding a^{2} to both sides gives $1>a^{2}$, and the only integer that satisfies this inequality is $a=0$. Therefore $a=b=0$.
Proving that this is indeed an inner product is very similar to a homework problem (HW 5, problem 2). I will leave this as an exercise.

