
MTH 342 Worksheet 8

Name: Answer Key Recitation time:

Show your work for each problem.

1. Let V be a real inner product space with inner product (·, ·). Prove that

(v + w, v − w) = ‖v‖2 − ‖w‖2

for all v, w ∈ V . Conclude that v +w and v −w are orthogonal if and only if the norms of v
and w are equal.
(Note: in V = R2 this can be used to prove that the diagonals of a rhombus are perpendicular).

Solution: Let v, w ∈ V . We simply need to expand (v+w, v−w) using the rules of an inner
product space:

(v + w, v − w) = (v, v − w) + (w, v − w)

= (v, v)− (v, w) + (w, v)− (w,w)

= ‖v‖2 − (v, w) + (w, v)− ‖w‖2

= ‖v‖2 − (v, w) + (v, w)− ‖w‖2

= ‖v‖2 − (v, w) + (v, w)− ‖w‖2 (since V is a real inner product space)

= ‖v‖2 − ‖w‖2.

Now we will prove the if and only if statement:

• (⇒) Suppose v + w and v − w are orthogonal. Then

‖v‖2 − ‖w‖2 = (v + w, v − w) = 0,

so ‖v‖2 = ‖w‖2, and hence ‖v‖ = ‖w‖. Note that we do not need to worry about ‖v‖ and
‖w‖ having different signs, because ‖v‖ and ‖w‖ must be nonnegative by the positivity
of the norm.

• (⇐) Suppose ‖v‖ = ‖w‖ then we have

(v + w, v − w) = ‖v‖2 − ‖w‖2 = 0,

so v + w and v − w are orthogonal.

2. Prove that
‖(x, y)‖ = max{|x|, |y|}

defines a norm on R2.

Solution: We need to prove each property of a norm. Let (x, y), (a, b) ∈ R2 and let λ ∈ R.

• Positivity: ‖(x, y)‖ is always the absolute value of a real number, so ‖(x, y)‖ ≥ 0.

• Definiteness: This is an if and only if statement, so we need to prove both directions:

• ‖(0, 0)‖ = max{|0|, |0|} = max{0, 0} = 0.

• Suppose ‖(x, y)‖ = 0. Then the largest absolute value of either component is 0.
Since the absolute value of any number is at least 0, the only way for this to occur
is if |x| = 0 and |y| = 0. By the definiteness of the absolute value we get x = 0 and
y = 0.



• Homogeneity: First suppose |x| ≥ |y|. Multiplying both sides of the inequality by |λ|
gives

|λ||x| ≥ |λ||y|

(note that the inequality does not change directions, because |λ| is nonnegative). Now

‖λ(x, y)‖ = ‖(λx, λy)‖
= max{|λx|, |λy|}
= max{|λ||x|, |λ||y|}
= |λ||x|
= |λ|max{|x|, |y|}
= |λ|‖(x, y)‖.

The proof in the case |x| ≤ |y| is nearly identical, so I will omit it.

• Triangle inequality: First suppose that |x+ a| ≥ |y + b|. Then

‖(x+ a, y + b)‖ = max{|x+ a|, |y + b|}
= |x+ a|
≤ |x|+ |a| (by the triangle inequality for the absolute value)

≤ max{|x|, |y|}+ max{|a|, |b|}
= ‖(x, y)‖+ ‖(a, b)‖.

The proof in the case |x+ a| ≤ |y + b| is nearly identical, so I will omit it.

3. Let V be an inner product space with inner product (·, ·). Suppose u, v ∈ V such that
‖u‖ = ‖v‖ = 1 and (u, v) = 1. Prove that u = v.

Solution: The way to do this is to show that (u− v, u− v) = 0. Notice that

(u, u) = ‖u‖2 = (1)2 = 1

(v, v) = ‖v‖2 = (1)2 = 1.

Then

(u− v, u− v) = (u, u− v)− (v, u− v)

= (u, u)− (u, v)−
(

(v, u)− (v, v)
)

= (u, u)− (u, v)−
(

(u, v)− (v, v)
)

= 1− 1− (1− 1)

= 1− 1− (1− 1)

= 0.

By definiteness of the inner product, we get u− v = 0 and hence u = v.



4. Let M2×2(R) be equipped with the inner product

(A,B) = trace(ATB).

Use the Gram-Schmidt process to find an orthonormal basis for the subspace

V = span

([
2 0
0 0

]
,

[
1 3
4 0

]
,

[
1 7
1 0

])
= span(A1, A2, A3).

Recall that the projection of A onto B is defined by

projB(A) =
(A,B)

(B,B)
B.

Solution: We first want to find an orthogonal (but not necessarily orthonormal) basis
{B1, B2, B3} using Gram-Schmidt orthogonalization:

B1 = A1

B2 = A2 − projB1
(A2)

B3 = A3 − projB1
(A3)− projB2

(A3).

To calculate projB1
(A2) we need to calculate two inner products:

(A2, B1) = trace(AT
2B1) = trace

([
2 0
0 0

] [
1 3
4 0

])
= trace

([
2 0
6 0

])
= 2,

(B1, B1) = trace(BT
1 B1) = trace

([
2 0
0 0

] [
2 0
0 0

])
= trace

([
4 0
0 0

])
= 4.

We can now calculate B2:

B2 = A2 − projB1
(A2)

= A2 −
(A2, B1)

(B1, B1)
B1

=

[
1 3
4 0

]
− 2

4

[
2 0
0 0

]
=

[
1 3
4 0

]
−
[
1 0
0 0

]
=

[
0 3
4 0

]
.

We will need to calculate three more inner products to find B3:

(A3, B1) = trace(AT
3B1) = trace

([
1 1
7 0

] [
2 0
0 0

])
= trace

([
2 0
14 0

])
= 2,

(A3, B2) = trace(AT
3B2) = trace

([
1 1
7 0

] [
0 3
4 0

])
= trace

([
4 3
0 21

])
= 4 + 21 = 25,

(B2, B2) = trace(BT
2 B2) = trace

([
0 4
3 0

] [
0 3
4 0

])
= trace

([
16 0
0 9

])
= 16 + 9 = 25.



We can now calculate B3:

B3 = A3 − projB1
(A3)− projB2

(A3)

= A3 −
(A3, B1)

(B1, B1)
B1 −

(A3, B2)

(B2, B2)
B2

=

[
1 7
1 0

]
− 2

4

[
2 0
0 0

]
− 25

25

[
0 3
4 0

]
=

[
1 7
1 0

]
−
[
1 0
0 0

]
−
[
0 3
4 0

]
=

[
0 4
−3 0

]
.

To find an orthonormal basis {E1, E2, E3} we just need to normalize each Bk:

E1 =
B1

‖B1‖

E2 =
B2

‖B2‖

E3 =
B3

‖B3‖
.

We can immediately calculate ‖B1‖ and ‖B2‖ using our previous calculations:

‖B1‖ =
√

(B1, B1) =
√

4 = 2,

‖B2‖ =
√

(B2, B2) =
√

25 = 5.

To calculate ‖B3‖ we first need to calculate (B3, B3):

(B3, B3) = trace(BT
3 B3) = trace

([
0 −3
4 0

] [
0 4
−3 0

])
= trace

([
9 0
0 16

])
= 9 + 16 = 25,

so
‖B3‖ =

√
(B3, B3) =

√
25 = 5.

We can now find the elements of the orthonormal basis {E1, E2, E3}:

E1 =
B1

‖B1‖
=

1

2

[
2 0
0 0

]
=

[
1 0
0 0

]
E2 =

B2

‖B2‖
=

1

5

[
0 3
4 0

]
=

[
0 3

5
4
5 0

]
E3 =

B3

‖B3‖
=

1

5

[
0 4
−3 0

]
=

[
0 4

5
−3

5 0

]
.


