MTH 342 Worksheet 8

Name: Answer Key

Recitation time: \qquad
Show your work for each problem.

1. Let V be a real inner product space with inner product (\cdot, \cdot). Prove that

$$
(v+w, v-w)=\|v\|^{2}-\|w\|^{2}
$$

for all $v, w \in V$. Conclude that $v+w$ and $v-w$ are orthogonal if and only if the norms of v and w are equal.
(Note: in $V=\mathbb{R}^{2}$ this can be used to prove that the diagonals of a rhombus are perpendicular).
Solution: Let $v, w \in V$. We simply need to expand $(v+w, v-w)$ using the rules of an inner product space:

$$
\begin{aligned}
(v+w, v-w) & =(v, v-w)+(w, v-w) \\
& =(v, v)-(v, w)+(w, v)-(w, w) \\
& =\|v\|^{2}-(v, w)+(w, v)-\|w\|^{2} \\
& =\|v\|^{2}-(v, w)+\overline{(v, w)}-\|w\|^{2} \\
& =\|v\|^{2}-(v, w)+(v, w)-\|w\|^{2} \quad \text { (since } V \text { is a real inner product space) } \\
& =\|v\|^{2}-\|w\|^{2} .
\end{aligned}
$$

Now we will prove the if and only if statement:

- (\Rightarrow) Suppose $v+w$ and $v-w$ are orthogonal. Then

$$
\|v\|^{2}-\|w\|^{2}=(v+w, v-w)=0
$$

so $\|v\|^{2}=\|w\|^{2}$, and hence $\|v\|=\|w\|$. Note that we do not need to worry about $\|v\|$ and $\|w\|$ having different signs, because $\|v\|$ and $\|w\|$ must be nonnegative by the positivity of the norm.

- (\Leftarrow) Suppose $\|v\|=\|w\|$ then we have

$$
(v+w, v-w)=\|v\|^{2}-\|w\|^{2}=0
$$

so $v+w$ and $v-w$ are orthogonal.
2. Prove that

$$
\|(x, y)\|=\max \{|x|,|y|\}
$$

defines a norm on \mathbb{R}^{2}.
Solution: We need to prove each property of a norm. Let $(x, y),(a, b) \in \mathbb{R}^{2}$ and let $\lambda \in \mathbb{R}$.

- Positivity: $\|(x, y)\|$ is always the absolute value of a real number, so $\|(x, y)\| \geq 0$.
- Definiteness: This is an if and only if statement, so we need to prove both directions:
- $\|(0,0)\|=\max \{|0|,|0|\}=\max \{0,0\}=0$.
- Suppose $\|(x, y)\|=0$. Then the largest absolute value of either component is 0 . Since the absolute value of any number is at least 0 , the only way for this to occur is if $|x|=0$ and $|y|=0$. By the definiteness of the absolute value we get $x=0$ and $y=0$.
- Homogeneity: First suppose $|x| \geq|y|$. Multiplying both sides of the inequality by $|\lambda|$ gives

$$
|\lambda||x| \geq|\lambda||y|
$$

(note that the inequality does not change directions, because $|\lambda|$ is nonnegative). Now

$$
\begin{aligned}
\|\lambda(x, y)\| & =\|(\lambda x, \lambda y)\| \\
& =\max \{|\lambda x|,|\lambda y|\} \\
& =\max \{|\lambda||x|,|\lambda||y|\} \\
& =|\lambda||x| \\
& =|\lambda| \max \{|x|,|y|\} \\
& =|\lambda|\|(x, y)\| .
\end{aligned}
$$

The proof in the case $|x| \leq|y|$ is nearly identical, so I will omit it.

- Triangle inequality: First suppose that $|x+a| \geq|y+b|$. Then

$$
\begin{aligned}
\|(x+a, y+b)\| & =\max \{|x+a|,|y+b|\} \\
& =|x+a| \\
& \leq|x|+|a| \quad(\text { by the triangle inequality for the absolute value) } \\
& \leq \max \{|x|,|y|\}+\max \{|a|,|b|\} \\
& =\|(x, y)\|+\|(a, b)\| .
\end{aligned}
$$

The proof in the case $|x+a| \leq|y+b|$ is nearly identical, so I will omit it.
3. Let V be an inner product space with inner product (\cdot, \cdot). Suppose $u, v \in V$ such that $\|u\|=\|v\|=1$ and $(u, v)=1$. Prove that $u=v$.
Solution: The way to do this is to show that $(u-v, u-v)=0$. Notice that

$$
\begin{aligned}
& (u, u)=\|u\|^{2}=(1)^{2}=1 \\
& (v, v)=\|v\|^{2}=(1)^{2}=1 .
\end{aligned}
$$

Then

$$
\begin{aligned}
(u-v, u-v) & =(u, u-v)-(v, u-v) \\
& =(u, u)-(u, v)-((v, u)-(v, v)) \\
& =(u, u)-(u, v)-(\overline{(u, v)}-(v, v)) \\
& =1-1-(\overline{1}-1) \\
& =1-1-(1-1) \\
& =0 .
\end{aligned}
$$

By definiteness of the inner product, we get $u-v=0$ and hence $u=v$.
4. Let $M_{2 \times 2}(\mathbb{R})$ be equipped with the inner product

$$
(A, B)=\operatorname{trace}\left(A^{T} B\right)
$$

Use the Gram-Schmidt process to find an orthonormal basis for the subspace

$$
V=\operatorname{span}\left(\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 3 \\
4 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 7 \\
1 & 0
\end{array}\right]\right)=\operatorname{span}\left(A_{1}, A_{2}, A_{3}\right)
$$

Recall that the projection of A onto B is defined by

$$
\operatorname{proj}_{B}(A)=\frac{(A, B)}{(B, B)} B
$$

Solution: We first want to find an orthogonal (but not necessarily orthonormal) basis $\left\{B_{1}, B_{2}, B_{3}\right\}$ using Gram-Schmidt orthogonalization:

$$
\begin{aligned}
& B_{1}=A_{1} \\
& B_{2}=A_{2}-\operatorname{proj}_{B_{1}}\left(A_{2}\right) \\
& B_{3}=A_{3}-\operatorname{proj}_{B_{1}}\left(A_{3}\right)-\operatorname{proj}_{B_{2}}\left(A_{3}\right) .
\end{aligned}
$$

To calculate $\operatorname{proj}_{B_{1}}\left(A_{2}\right)$ we need to calculate two inner products:

$$
\begin{aligned}
& \left(A_{2}, B_{1}\right)=\operatorname{trace}\left(A_{2}^{T} B_{1}\right)=\operatorname{trace}\left(\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 3 \\
4 & 0
\end{array}\right]\right)=\operatorname{trace}\left(\left[\begin{array}{ll}
2 & 0 \\
6 & 0
\end{array}\right]\right)=2, \\
& \left(B_{1}, B_{1}\right)=\operatorname{trace}\left(B_{1}^{T} B_{1}\right)=\operatorname{trace}\left(\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]\right)=\operatorname{trace}\left(\left[\begin{array}{ll}
4 & 0 \\
0 & 0
\end{array}\right]\right)=4
\end{aligned}
$$

We can now calculate B_{2} :

$$
\begin{aligned}
B_{2} & =A_{2}-\operatorname{proj}_{B_{1}}\left(A_{2}\right) \\
& =A_{2}-\frac{\left(A_{2}, B_{1}\right)}{\left(B_{1}, B_{1}\right)} B_{1} \\
& =\left[\begin{array}{ll}
1 & 3 \\
4 & 0
\end{array}\right]-\frac{2}{4}\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 3 \\
4 & 0
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 3 \\
4 & 0
\end{array}\right] .
\end{aligned}
$$

We will need to calculate three more inner products to find B_{3} :

$$
\begin{aligned}
& \left(A_{3}, B_{1}\right)=\operatorname{trace}\left(A_{3}^{T} B_{1}\right)=\operatorname{trace}\left(\left[\begin{array}{ll}
1 & 1 \\
7 & 0
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]\right)=\operatorname{trace}\left(\left[\begin{array}{cc}
2 & 0 \\
14 & 0
\end{array}\right]\right)=2, \\
& \left(A_{3}, B_{2}\right)=\operatorname{trace}\left(A_{3}^{T} B_{2}\right)=\operatorname{trace}\left(\left[\begin{array}{ll}
1 & 1 \\
7 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 3 \\
4 & 0
\end{array}\right]\right)=\operatorname{trace}\left(\left[\begin{array}{cc}
4 & 3 \\
0 & 21
\end{array}\right]\right)=4+21=25, \\
& \left(B_{2}, B_{2}\right)=\operatorname{trace}\left(B_{2}^{T} B_{2}\right)=\operatorname{trace}\left(\left[\begin{array}{ll}
0 & 4 \\
3 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 3 \\
4 & 0
\end{array}\right]\right)=\operatorname{trace}\left(\left[\begin{array}{cc}
16 & 0 \\
0 & 9
\end{array}\right]\right)=16+9=25 .
\end{aligned}
$$

We can now calculate B_{3} :

$$
\begin{aligned}
B_{3} & =A_{3}-\operatorname{proj}_{B_{1}}\left(A_{3}\right)-\operatorname{proj}_{B_{2}}\left(A_{3}\right) \\
& =A_{3}-\frac{\left(A_{3}, B_{1}\right)}{\left(B_{1}, B_{1}\right)} B_{1}-\frac{\left(A_{3}, B_{2}\right)}{\left(B_{2}, B_{2}\right)} B_{2} \\
& =\left[\begin{array}{ll}
1 & 7 \\
1 & 0
\end{array}\right]-\frac{2}{4}\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]-\frac{25}{25}\left[\begin{array}{ll}
0 & 3 \\
4 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 7 \\
1 & 0
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]-\left[\begin{array}{ll}
0 & 3 \\
4 & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
0 & 4 \\
-3 & 0
\end{array}\right] .
\end{aligned}
$$

To find an orthonormal basis $\left\{E_{1}, E_{2}, E_{3}\right\}$ we just need to normalize each B_{k} :

$$
\begin{aligned}
E_{1} & =\frac{B_{1}}{\left\|B_{1}\right\|} \\
E_{2} & =\frac{B_{2}}{\left\|B_{2}\right\|} \\
E_{3} & =\frac{B_{3}}{\left\|B_{3}\right\|}
\end{aligned}
$$

We can immediately calculate $\left\|B_{1}\right\|$ and $\left\|B_{2}\right\|$ using our previous calculations:

$$
\begin{aligned}
& \left\|B_{1}\right\|=\sqrt{\left(B_{1}, B_{1}\right)}=\sqrt{4}=2, \\
& \left\|B_{2}\right\|=\sqrt{\left(B_{2}, B_{2}\right)}=\sqrt{25}=5 .
\end{aligned}
$$

To calculate $\left\|B_{3}\right\|$ we first need to calculate $\left(B_{3}, B_{3}\right)$:

$$
\left(B_{3}, B_{3}\right)=\operatorname{trace}\left(B_{3}^{T} B_{3}\right)=\operatorname{trace}\left(\left[\begin{array}{cc}
0 & -3 \\
4 & 0
\end{array}\right]\left[\begin{array}{cc}
0 & 4 \\
-3 & 0
\end{array}\right]\right)=\operatorname{trace}\left(\left[\begin{array}{cc}
9 & 0 \\
0 & 16
\end{array}\right]\right)=9+16=25,
$$

so

$$
\left\|B_{3}\right\|=\sqrt{\left(B_{3}, B_{3}\right)}=\sqrt{25}=5 .
$$

We can now find the elements of the orthonormal basis $\left\{E_{1}, E_{2}, E_{3}\right\}$:

$$
\begin{aligned}
& E_{1}=\frac{B_{1}}{\left\|B_{1}\right\|}=\frac{1}{2}\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \\
& E_{2}=\frac{B_{2}}{\left\|B_{2}\right\|}=\frac{1}{5}\left[\begin{array}{ll}
0 & 3 \\
4 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & \frac{3}{5} \\
\frac{4}{5} & 0
\end{array}\right] \\
& E_{3}=\frac{B_{3}}{\left\|B_{3}\right\|}=\frac{1}{5}\left[\begin{array}{cc}
0 & 4 \\
-3 & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & \frac{4}{5} \\
-\frac{3}{5} & 0
\end{array}\right] .
\end{aligned}
$$

