
MTH 342 Worksheet 9

Name: Answer Key Recitation time:

Show your work for each problem.

1. Consider R3 as an inner product space with the standard inner product denoted by (·, ·). Let
E be the subspace of R3 given by

E =


ab
c

 ∈ R3 : a− b+ c = 0

 .

(a) Find an orthonormal basis for E.

Solution: First we need to find a basis for E (not necessarily orthogonal). Notice that
we can rewrite E as

E =


ab
c

 ∈ R3 : a− b+ c = 0

 =


ab
c

 ∈ R3 : a = b− c


=


b− cb

c

 : b, c ∈ R


=

b
1

1
0

+ c

−1
0
1

 : b, c ∈ R


= span


1

1
0

 ,
−1

0
1

 .

A basis for E is given by

{u1, u2} =


1

1
0

 ,
−1

0
1

 .

To find an orthogonal (not necessarily orthonormal) basis {w1, w2}, we apply the Gram-
Schmidt process:

w1 = u1,

w2 = u2 − projw1
(u2).

In this case,

projw1
(u2) =

(u2, w1)

(w1, w1)
w1 =

(−1)(1) + (0)(1) + (1)(0)

(−1)(−1) + (1)(1) + (0)(0)

1
1
0

 = −1

2

1
1
0

 .
Therefore

w2 =

−1
0
1

− (−1

2

)1
1
0

 =

−1
2

1
2
1

 .
Now {w1, w2} is an orthogonal (but not orthonormal) basis for E. We can scale any of
the vectors without affecting the orthogonality, so we will multiply w2 by 2 to get the
orthogonal basis

{z1, z2} =


1

1
0

 ,
−1

1
2

 .



To find an orthonormal basis {v1, v2}, we simply normalize w1 and w2:

v1 =
z1
‖z1‖

=
z1√

(z1, z1)
=

1√
2

1
1
0

 =

√
2

2

1
1
0

 .

v2 =
z2
‖z2‖

=
z2√

(z2, z2)
=

1√
6

−1
1
2

 =

√
6

6

−1
1
2

 .

(b) Find the orthogonal projection of v =

1
2
3

 onto E.

Solution: Consider the orthogonal basis

{z1, z2} =


1

1
0

 ,
−1

1
2

 .

for E that we found in part (a). Then

projE(v) = projz1(v) + projz2(v)

=
(v, z1)

(z1, z1)
z1 +

(v, z2)

(z2, z2)
z2

=
3

2

1
1
0

+
7

6

−1
1
2


=

1

6

 2
16
14


=

1

3

1
8
7

 .



2. Consider the following set of points in the x-y plane:

{(1, 2), (3, 4), (4,−2), (5, 5), (−1, 5)}.

Set up an equation to find the best fit quadratic polynomial for these points. That is, find a
matrix A and a vector b such that the least squares solution to

A

ab
c

 = b

defines the best fit polynomial f(x) = ax2 + bx+ c. Recall that the least squares solution to
Ax = b is the ordinary solution to A∗Ax = A∗b.

Solution: Given the unknown quadratic polynomial ax2+bx+c, we want to choose a, b, c ∈ R
to minimize the quantity

n∑
k=1

|ax2k + bxk + c− yk|2.

This is equivalent to minimizing∥∥∥∥∥∥∥∥∥


x21 x1 1
x22 x2 1
...

...
...

x2n xn 1


ab
c

−

y1
y2
...
yn


∥∥∥∥∥∥∥∥∥ .

That is, we want to find the least squares solution to

A

ab
c

 = b

where

A =


12 1 1
32 3 1
42 4 1
52 5 1

(−1)2 −1 1

 =


1 1 1
9 3 1
16 4 1
25 5 1
1 −1 1


and

b =


1
4
−2
5
5

 .
To find a, b, c, you need to solve

A∗A

ab
c

 = A∗b.

This is a standard augmented matrix row-reduction exercise, so I will leave it to you to finish.



3. Let B = A∗A where

A =

1 i
1 0
0 1

 .
Find the eigenvalues and eigenvectors of B. Is B orthogonally diagonalizable (under the
standard inner product (x, y) = x1y1 + x2y2 on C2)?

Solution: First calculate A∗:

A∗ =

[
1 1 0
−i 0 1

]
.

Now

B = A∗A =

[
1 1 0
−i 0 1

]1 i
1 0
0 1

 =

[
2 i
−i 2

]
.

Calculating the eigenvalues and eigenvectors of B should be a standard exercise by now,
so I will omit the details. You should get eigenvalues λ1 = 1 and λ2 = 3 with associated
eigenspaces

E1 =

{
a

[
−i
1

]
: a ∈ C

}
and

E3 =

{
b

[
i
1

]
: b ∈ C

}
.

Notice that the geometric multiplicity matches the algebraic multiplicity for each eigenvalue,
so B is diagonalizable. To see that it is orthogonally diagonalizable, note that([

−i
1

]
,

[
i
1

])
= (−i)(i) + (1)(1) = (−i)(−i) + (1)(1) = −1 + 1 = 0,

so these eigenvalues are orthogonal.

We didn’t need to calculate the eigenspaces to know that B was orthogonally diagonalizable.
Notice that B satisfies

B∗ = (A∗A) = A∗(A∗)∗ = A∗A = B,

so B is self-adjoint. It is a fact that every self-adjoint matrix is orthogonally diagonalizable.



4. Let V be the set of continuous functions from [0, 1] to R. Equip V with the inner product

(f(x), g(x)) =

∫ 1

0
f(x)g(x) dx.

Let E = span{1, x}. Find projE(g) where g(x) =
1

x2 + 1
.

Solution: First we need to find an orthogonal basis for E by applying the Gram-Schmidt
process. We start with the basis

{w1, w2} = {1, x}.
Our orthogonal basis is {v1, v2} where

v1 = w1,

v2 = w2 − projv1(w2).

We need to calculate two inner products:

(w2, v1) = (x, 1) =

∫ 1

0
x dx =

1

2

and

(v1, v1) =

∫ 1

0
1 dx = 1.

Therefore

v2 = w2 − projv1(w2) = x− (x, 1)

(1, 1)
1 = x− 1

2 ,

so our orthogonal basis for E is

{v1, v2} = {1, x− 1
2}.

To calculate projE(g) we will need to calculate a few more inner products:

(g, v1) =

∫ 1

0

1

x2 + 1
dx = tan−1(x)

∣∣∣∣1
0

=
π

4
− 0 =

π

4

(g, v2) =

∫ 1

0

x

x2 + 1
− 1

2
· 1

x2 + 1
dx

=
1

2
ln(x2 + 1)− 1

2
tan−1(x)

∣∣∣∣1
0

=
1

2
ln(2)− π

8

(v2, v2) =

∫ 1

0
(x− 1

2)2 dx =
1

12
.

We can now calculate projE(g):

projE(g) =
(g, v1)

(v1, v1)
v1 +

(g, v2)

(v2, v2)
v2

=
π

4
v1 +

1
2 ln(2)− π

8
1
12

v2

=
π

4
+

(
6 ln(2)− 3

2
π

)
(x− 1

2).


