\qquad

Show your work for each problem.

1. Consider \mathbb{R}^{3} as an inner product space with the standard inner product denoted by (\cdot, \cdot). Let E be the subspace of \mathbb{R}^{3} given by

$$
E=\left\{\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \in \mathbb{R}^{3}: a-b+c=0\right\}
$$

(a) Find an orthonormal basis for E.

Solution: First we need to find a basis for E (not necessarily orthogonal). Notice that we can rewrite E as

$$
\begin{aligned}
E=\left\{\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \in \mathbb{R}^{3}: a-b+c=0\right\} & =\left\{\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \in \mathbb{R}^{3}: a=b-c\right\} \\
& =\left\{\left[\begin{array}{c}
b-c \\
b \\
c
\end{array}\right]: b, c \in \mathbb{R}\right\} \\
& =\left\{b\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+c\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]: b, c \in \mathbb{R}\right\} \\
& =\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

A basis for E is given by

$$
\left\{u_{1}, u_{2}\right\}=\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right\}
$$

To find an orthogonal (not necessarily orthonormal) basis $\left\{w_{1}, w_{2}\right\}$, we apply the GramSchmidt process:

$$
\begin{aligned}
& w_{1}=u_{1} \\
& w_{2}=u_{2}-\operatorname{proj}_{w_{1}}\left(u_{2}\right)
\end{aligned}
$$

In this case,

$$
\operatorname{proj}_{w_{1}}\left(u_{2}\right)=\frac{\left(u_{2}, w_{1}\right)}{\left(w_{1}, w_{1}\right)} w_{1}=\frac{(-1)(1)+(0)(1)+(1)(0)}{(-1)(-1)+(1)(1)+(0)(0)}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=-\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

Therefore

$$
w_{2}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]-\left(-\frac{1}{2}\right)\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

Now $\left\{w_{1}, w_{2}\right\}$ is an orthogonal (but not orthonormal) basis for E. We can scale any of the vectors without affecting the orthogonality, so we will multiply w_{2} by 2 to get the orthogonal basis

$$
\left\{z_{1}, z_{2}\right\}=\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right]\right\}
$$

To find an orthonormal basis $\left\{v_{1}, v_{2}\right\}$, we simply normalize w_{1} and w_{2} :

$$
\begin{gathered}
v_{1}=\frac{z_{1}}{\left\|z_{1}\right\|}=\frac{z_{1}}{\sqrt{\left(z_{1}, z_{1}\right)}}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\frac{\sqrt{2}}{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] . \\
v_{2}=\frac{z_{2}}{\left\|z_{2}\right\|}=\frac{z_{2}}{\sqrt{\left(z_{2}, z_{2}\right)}}=\frac{1}{\sqrt{6}}\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right]=\frac{\sqrt{6}}{6}\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right] .
\end{gathered}
$$

(b) Find the orthogonal projection of $v=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ onto E.

Solution: Consider the orthogonal basis

$$
\left\{z_{1}, z_{2}\right\}=\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right]\right\} .
$$

for E that we found in part (a). Then

$$
\begin{aligned}
\operatorname{proj}_{E}(v) & =\operatorname{proj}_{z_{1}}(v)+\operatorname{proj}_{z_{2}}(v) \\
& =\frac{\left(v, z_{1}\right)}{\left(z_{1}, z_{1}\right)} z_{1}+\frac{\left(v, z_{2}\right)}{\left(z_{2}, z_{2}\right)} z_{2} \\
& =\frac{3}{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+\frac{7}{6}\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right] \\
& =\frac{1}{6}\left[\begin{array}{c}
2 \\
16 \\
14
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{c}
1 \\
8 \\
7
\end{array}\right] .
\end{aligned}
$$

2. Consider the following set of points in the $x-y$ plane:

$$
\{(1,2),(3,4),(4,-2),(5,5),(-1,5)\} .
$$

Set up an equation to find the best fit quadratic polynomial for these points. That is, find a matrix \mathbf{A} and a vector \mathbf{b} such that the least squares solution to

$$
\mathbf{A}\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\mathbf{b}
$$

defines the best fit polynomial $f(x)=a x^{2}+b x+c$. Recall that the least squares solution to $\mathbf{A x}=\mathbf{b}$ is the ordinary solution to $\mathbf{A}^{*} \mathbf{A x}=\mathbf{A}^{*} \mathbf{b}$.
Solution: Given the unknown quadratic polynomial $a x^{2}+b x+c$, we want to choose $a, b, c \in \mathbb{R}$ to minimize the quantity

$$
\sum_{k=1}^{n}\left|a x_{k}^{2}+b x_{k}+c-y_{k}\right|^{2} .
$$

This is equivalent to minimizing

$$
\left\|\left[\begin{array}{ccc}
x_{1}^{2} & x_{1} & 1 \\
x_{2}^{2} & x_{2} & 1 \\
\vdots & \vdots & \vdots \\
x_{n}^{2} & x_{n} & 1
\end{array}\right]\left[\begin{array}{c}
a \\
b \\
c
\end{array}\right]-\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]\right\|
$$

That is, we want to find the least squares solution to

$$
\mathbf{A}\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\mathbf{b}
$$

where

$$
\mathbf{A}=\left[\begin{array}{ccc}
1^{2} & 1 & 1 \\
3^{2} & 3 & 1 \\
4^{2} & 4 & 1 \\
5^{2} & 5 & 1 \\
(-1)^{2} & -1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
9 & 3 & 1 \\
16 & 4 & 1 \\
25 & 5 & 1 \\
1 & -1 & 1
\end{array}\right]
$$

and

$$
\mathbf{b}=\left[\begin{array}{c}
1 \\
4 \\
-2 \\
5 \\
5
\end{array}\right]
$$

To find a, b, c, you need to solve

$$
\mathbf{A}^{*} \mathbf{A}\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\mathbf{A}^{*} \mathbf{b}
$$

This is a standard augmented matrix row-reduction exercise, so I will leave it to you to finish.
3. Let $B=A^{*} A$ where

$$
A=\left[\begin{array}{ll}
1 & i \\
1 & 0 \\
0 & 1
\end{array}\right]
$$

Find the eigenvalues and eigenvectors of B. Is B orthogonally diagonalizable (under the standard inner product $(x, y)=x_{1} \overline{y_{1}}+x_{2} \overline{y_{2}}$ on $\left.\mathbb{C}^{2}\right)$?
Solution: First calculate A^{*} :

$$
A^{*}=\left[\begin{array}{ccc}
1 & 1 & 0 \\
-i & 0 & 1
\end{array}\right]
$$

Now

$$
B=A^{*} A=\left[\begin{array}{ccc}
1 & 1 & 0 \\
-i & 0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & i \\
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
2 & i \\
-i & 2
\end{array}\right] .
$$

Calculating the eigenvalues and eigenvectors of B should be a standard exercise by now, so I will omit the details. You should get eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=3$ with associated eigenspaces

$$
E_{1}=\left\{a\left[\begin{array}{c}
-i \\
1
\end{array}\right]: a \in \mathbb{C}\right\}
$$

and

$$
E_{3}=\left\{b\left[\begin{array}{l}
i \\
1
\end{array}\right]: b \in \mathbb{C}\right\} .
$$

Notice that the geometric multiplicity matches the algebraic multiplicity for each eigenvalue, so B is diagonalizable. To see that it is orthogonally diagonalizable, note that

$$
\left(\left[\begin{array}{c}
-i \\
1
\end{array}\right],\left[\begin{array}{l}
i \\
1
\end{array}\right]\right)=(-i)(\bar{i})+(1)(\overline{1})=(-i)(-i)+(1)(1)=-1+1=0,
$$

so these eigenvalues are orthogonal.
We didn't need to calculate the eigenspaces to know that B was orthogonally diagonalizable. Notice that B satisfies

$$
B^{*}=\left(A^{*} A\right)=A^{*}\left(A^{*}\right)^{*}=A^{*} A=B,
$$

so B is self-adjoint. It is a fact that every self-adjoint matrix is orthogonally diagonalizable.
4. Let V be the set of continuous functions from $[0,1]$ to \mathbb{R}. Equip V with the inner product

$$
(f(x), g(x))=\int_{0}^{1} f(x) g(x) d x
$$

Let $E=\operatorname{span}\{1, x\}$. Find $\operatorname{proj}_{E}(g)$ where $g(x)=\frac{1}{x^{2}+1}$.
Solution: First we need to find an orthogonal basis for E by applying the Gram-Schmidt process. We start with the basis

$$
\left\{w_{1}, w_{2}\right\}=\{1, x\} .
$$

Our orthogonal basis is $\left\{v_{1}, v_{2}\right\}$ where

$$
\begin{aligned}
& v_{1}=w_{1} \\
& v_{2}=w_{2}-\operatorname{proj}_{v_{1}}\left(w_{2}\right) .
\end{aligned}
$$

We need to calculate two inner products:

$$
\left(w_{2}, v_{1}\right)=(x, 1)=\int_{0}^{1} x d x=\frac{1}{2}
$$

and

$$
\left(v_{1}, v_{1}\right)=\int_{0}^{1} 1 d x=1
$$

Therefore

$$
v_{2}=w_{2}-\operatorname{proj}_{v_{1}}\left(w_{2}\right)=x-\frac{(x, 1)}{(1,1)} 1=x-\frac{1}{2}
$$

so our orthogonal basis for E is

$$
\left\{v_{1}, v_{2}\right\}=\left\{1, x-\frac{1}{2}\right\}
$$

To calculate $\operatorname{proj}_{E}(g)$ we will need to calculate a few more inner products:

$$
\begin{aligned}
\left(g, v_{1}\right) & =\int_{0}^{1} \frac{1}{x^{2}+1} d x=\left.\tan ^{-1}(x)\right|_{0} ^{1}=\frac{\pi}{4}-0=\frac{\pi}{4} \\
\left(g, v_{2}\right) & =\int_{0}^{1} \frac{x}{x^{2}+1}-\frac{1}{2} \cdot \frac{1}{x^{2}+1} d x \\
& =\frac{1}{2} \ln \left(x^{2}+1\right)-\left.\frac{1}{2} \tan ^{-1}(x)\right|_{0} ^{1} \\
& =\frac{1}{2} \ln (2)-\frac{\pi}{8} \\
\left(v_{2}, v_{2}\right) & =\int_{0}^{1}\left(x-\frac{1}{2}\right)^{2} d x=\frac{1}{12}
\end{aligned}
$$

We can now calculate $\operatorname{proj}_{E}(g)$:

$$
\begin{aligned}
\operatorname{proj}_{E}(g) & =\frac{\left(g, v_{1}\right)}{\left(v_{1}, v_{1}\right)} v_{1}+\frac{\left(g, v_{2}\right)}{\left(v_{2}, v_{2}\right)} v_{2} \\
& =\frac{\pi}{4} v_{1}+\frac{\frac{1}{2} \ln (2)-\frac{\pi}{8}}{\frac{1}{12}} v_{2} \\
& =\frac{\pi}{4}+\left(6 \ln (2)-\frac{3}{2} \pi\right)\left(x-\frac{1}{2}\right) .
\end{aligned}
$$

