Some review problems for Final

1. Review homework sets $5,6,7,8$. You can exclude all problems that involve coding.
2. Review all the worksheets after the midterm exam.
3. Consider the function $f(x)=\frac{5}{8\left(1+x^{2}\right)}$.
(a) Solve for all fixed points of f.
(b) Write an iteration formula for the fixed point method.
(c) With $x_{0}=1$, what is the limit of $\left(x_{n}\right)$? Find the order of convergence. If the order of convergence is 1 , find the linear rate of convergence.
(d) Sketch a cobweb diagram that illustrates the fixed point method with $x_{0}=1$.
4. Find the interpolation polynomial of the following points using Lagrange and Newton formula:
(a) $(-1,1),(0,-1),(1,1),(2,0)$.
(b) $(-1,0),(0,-1),(1,0),(0,1)$.
5. Let f be a function such that $f(1)=0, f(2)=1, f(3)=-1, f(4)=2$. Find the divided difference $f[1,2,3,4]$.
6. Let $f(x)=\frac{1}{x^{2}-1}$. For evenly spaced sample points $3=x_{1}<x_{2}<\ldots<x_{n}=5$, let P_{n} be the corresponding interpolation polynomial. Find n such that

$$
\left|f(x)-P_{n}(x)\right| \leq 10^{-4} \quad \forall x \in[3,5] .
$$

7. Find a quadratic spline that fits three points $(-1,1),(0,2),(2,0)$. Sketch this spline.
8. We want to find an approximate value of the integral $I=\int_{1}^{2} \frac{1}{\left(x^{2}+1\right)^{2}} d x$. Let n be the number of equal subintervals of the interval $[1,2]$.
(a) For $n=4$, use right-point rule to approximate I.
(b) For $n=4$, use midpoint rule to approximate I.
(c) For $n=4$, use trapezoid rule to approximate I.
(d) How big should n be such that the midpoint rule gives an approximate value of I with error less than 10^{-4} ?
