
MTH 351 HW #1 Grader’s solutions

Problem 1.

Let f(t) = 1
1−t .

a. Derive a formula for the n’th Taylor polynomial around t0 = 0 called pn, of f .

b. How large should n be so that f can be approximated by its n’th Taylor polynomial with error not
exceeding ε = 10−4 for all −1/3 < t < 1/3?

Solution

Taylor’s theorem tells us that if f is n times differentiable, then f can be expressed as f(t) =∑n
k=0

(t−a)k(f(t0))
k! + Rn(t) where Rn(t) is the remainder term. As the domain of interest excludes 1, f

has an infinity of derivatives. Define

pn(t) =

n∑
k=0

(t− t0)k
f (k)(t0)

k!

We need to determine the sequence of coefficients f (n)(t0) in terms of n.

f(t0) =
1

1− t0
=⇒ f(0) = 1

f ′(t0) =
1

(1− t0)2
=⇒ f ′(0) = 1

f ′′(t0) =
2

(1− t0)3
=⇒ f ′′(0) = 2

f (3)(t0) =
2 · 3

(1− t0)4
=⇒ f (4)(0) = 2 · 3

f (4)(t0) =
2 · 3 · 4

(1− t0)5
=⇒ f (4)(0) = 2 · 3 · 4

f (5)(t0) =
2 · 3 · 4 · 5
(1− t0)6

=⇒ f (5)(0) = 2 · 3 · 4 · 5

f (6)(t0) =
2 · 3 · 4 · 5 · 6

(1− t0)7
=⇒ f (6)(0) = 2 · 3 · 4 · 5 · 6

...
...

f (n)(t0) =
n!

(1− t0)(n+1)
=⇒ f (n)(0) = n!

We can then collect this into pn as

pn(t) =

n∑
k=0

(t− 0)k
k!

k!
=⇒ pn(t) =

n∑
k=0

tk

To compute an error bound, observe that this is in fact a geometric sum of t, so

f(t) =

∞∑
k=0

tk =

n∑
k=0

tk +
tn+1

1− t
= pn(t) +Rn(t)

which gives an explicit error as Rn(t) = tn+1

1−t . We could alternatively compute an error bound using the
Lagrange’s error term.

|Rn(x)| =
∣∣∣∣ (n+ 1)!

(1− c)n+2

1

(n+ 1)!
xn+1

∣∣∣∣ =

∣∣∣∣ xn+1

(1− c)n+2

∣∣∣∣ ≤ |x|n+1

(2/3)n+2
=

3

2

(
3

2
|x|
)n+1

≤ 3

2

1

2n+1
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Here we have used the fact that |x| ≤ 1/3. To make sure that |Rn(x)| ≤ 10−4, we only need

3

2

1

2n+1
< 10−4

By calculator, we see that n ≥ 13 will do it. Thus, n = 13 is a value of n such that we can guarantee the
error is under the given threshold.

Note that for the problem as initially posed on
[
− 1

2 ,
1
2

]
requires us to use the explicit error found above

(using the geometric series).

Problem 2.

Let g(x) = 1
2+3x .

a. Derive a formula for the n’th Taylor polynomial around x0 = 0 called qn, of g.

b. How large should n be so that g can be approximated by its n’th Taylor polynomial with error not
exceeding ε = 10−5 for all 0 < x < 1/5?

Solution

We will use a substitution shortcut to express g in relation to f , rather than re-deriving the series. Note
that

g(x) =
1

2 + 3x
=

1

2

1

1−
(
− 3x

2

)
So with y = −3x/2,

g(x) =
1

2
f(y) =

1

2
(pn(y) +Rn(y)) =

1

2

n∑
k=0

(
−3x

2

)k

+
1

2
Rn

(
−3x

2

)
So we get g(x) = qn(x) + En(x) where

qn(x) =
1

2

n∑
k=0

(
−3x

2

)k

, En(x) =
1

2
Rn

(
−3x

2

)
.

qn is the n’th Taylor polynomial and En is the remainder of function g. By Part (a), we know that

Rn(y) =
yn+1

(1− c)n+2

for some c in between 0 and y. Now with y = −3x/2,

Rn

(
−3x

2

)
=

(
− 3x

2

)n+1

(1− c)n+2

for some c in between 0 and −3x/2. Because x varies between 0 and 1/5, c is somewhere between −3/10
and 0. We estimate the size of the error term as follows.

|En(x)| = 1

2
|Rn

(
−3x

2

)
| = 1

2

(
3x

2

)n+1
1

(1− c)n+2 ≤
1

2

(
3/5

2

)n+1

.

Here we have used the fact that 1− c is at least 1, and x is at most 1/5. To guarantee that |En(x)| < 10−5,
we only need to choose n such that

1

2

(
3/5

2

)n+1

< 10−5.

By simply trying with a calculator, we see that n ≥ 8 is sufficient.
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Problem 3.

Let h(x) = 1
1+x2 .

a. Derive a formula for the n’th Taylor polynomial around x0 = 0 called rn, of h.

b. How large should n be so that h can be approximated by its n’th Taylor polynomial with error not
exceeding ε = 10−5 for all −0.4 < x < 0.5?

Solution

We use a similar substitution method rather than finding the n-th derivative of h.

h(x) =
1

1 + x2
=

1

1− (−x2)
= f

(
−x2

)
We have

h(x) = f(−x2) = pn(−x2) +Rn(−x2) =

n∑
k=0

(− x2)
k

︸ ︷︷ ︸
r2n(x)

+Rn(−x2)︸ ︷︷ ︸
Q2n(x)

.

We have found the (2n)’th Taylor polynomial of h:

r2n(x) = pn
(
−x2

)
=

n∑
k=0

(
−x2

)k
=

n∑
k=0

(−1)kx2k (1)

The remainder is Q2n(x) = Rn(−x2). We also observe that r2n+1(x) = r2n(x) because all odd powers of x
has coefficient equal to 0. By Part (a), we know that

Rn(y) =
yn+1

(1− c)n+2

for some c in between 0 and y. Now with y = −x2,

Rn(−x2) =
(−x2)n+1

(1− c)n+2

for some c in between 0 and −x2. Because x varies between -0.4 and 0.5, c is somewhere between −0.25 and
0. We estimate the size of the error term as follows.

|Q2n(x)| = 1

2
|Rn(−x2)| = 1

2
(x2)

n+1 1

(1− c)n+2 ≤
1

2
(0.25)

n+1
.

Here we have used the fact that 1−c is at least 1, and x2 is at most 0.25. To guarantee that |Q2n(x)| < 10−5,
we only need to choose n such that

1

2
(0.25)n+1 < 10−5.

By simply trying with a calculator, we see that n ≥ 7 is sufficient.

Problem 4.

Write Matlab code using either a “for” loop or a “while” loop to compute the following sum:

10∑
k=1

πk
k∏

j=1

2j − 1

2j
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Solution

format long

total = 0;

for ii = 1:10

prod = 1;

for jj = 1:ii

prod = prod *(2*jj -1) /(2*jj);

end

disp(total)

total = total + pi^ii * prod;

end

disp(total)

Which prints

0

1.570796326794897

5.271897977203405

14.961359439797098

41.596657769407130

1.169061895720350e+02

3.337820721070890e+02

9.664509171833797e+02

2.829814475789768e+03

8.358525449880932e+03

2.485903534090570e+04

So

2.485903534090570× 104 ≈
10∑
k=1

πk
k∏

j=1

2j − 1

2j
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