Problem 1.

Let $f(t)=\frac{1}{1-t}$.
a. Derive a formula for the n 'th Taylor polynomial around $t_{0}=0$ called p_{n}, of f.
b. How large should n be so that f can be approximated by its n 'th Taylor polynomial with error not exceeding $\epsilon=10^{-4}$ for all $-1 / 3<t<1 / 3$?

Solution

Taylor's theorem tells us that if f is n times differentiable, then f can be expressed as $f(t)=$ $\sum_{k=0}^{n} \frac{(t-a)^{k}\left(f\left(t_{0}\right)\right)}{k!}+R_{n}(t)$ where $R_{n}(t)$ is the remainder term. As the domain of interest excludes $1, f$ has an infinity of derivatives. Define

$$
p_{n}(t)=\sum_{k=0}^{n}\left(t-t_{0}\right)^{k} \frac{f^{(k)}\left(t_{0}\right)}{k!}
$$

We need to determine the sequence of coefficients $f^{(n)}\left(t_{0}\right)$ in terms of n.

$$
\begin{aligned}
f\left(t_{0}\right) & =\frac{1}{1-t_{0}} & & \Longrightarrow \\
f^{\prime}\left(t_{0}\right) & =\frac{1}{\left(1-t_{0}\right)^{2}} & & f(0)=1 \\
f^{\prime \prime}\left(t_{0}\right) & =\frac{2}{\left(1-t_{0}\right)^{3}} & & f^{\prime}(0)=1 \\
f^{(3)}\left(t_{0}\right) & =\frac{2 \cdot 3}{\left(1-t_{0}\right)^{4}} & & f^{\prime \prime}(0)=2 \\
f^{(4)}\left(t_{0}\right) & =\frac{2 \cdot 3 \cdot 4}{\left(1-t_{0}\right)^{5}} & & f^{(4)}(0)=2 \cdot 3 \\
f^{(5)}\left(t_{0}\right) & =\frac{2 \cdot 3 \cdot 4 \cdot 5}{\left(1-t_{0}\right)^{6}} & & f^{(4)}(0)=2 \cdot 3 \cdot 4 \\
f^{(6)}\left(t_{0}\right) & =\frac{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}{\left(1-t_{0}\right)^{7}} & & \Longrightarrow
\end{aligned}
$$

We can then collect this into p_{n} as

$$
p_{n}(t)=\sum_{k=0}^{n}(t-0)^{k} \frac{k!}{k!} \Longrightarrow p_{n}(t)=\sum_{k=0}^{n} t^{k}
$$

To compute an error bound, observe that this is in fact a geometric sum of t, so

$$
f(t)=\sum_{k=0}^{\infty} t^{k}=\sum_{k=0}^{n} t^{k}+\frac{t^{n+1}}{1-t}=p_{n}(t)+R_{n}(t)
$$

which gives an explicit error as $R_{n}(t)=\frac{t^{n+1}}{1-t}$. We could alternatively compute an error bound using the Lagrange's error term.

$$
\left|R_{n}(x)\right|=\left|\frac{(n+1)!}{(1-c)^{n+2}} \frac{1}{(n+1)!} x^{n+1}\right|=\left|\frac{x^{n+1}}{(1-c)^{n+2}}\right| \leq \frac{|x|^{n+1}}{(2 / 3)^{n+2}}=\frac{3}{2}\left(\frac{3}{2}|x|\right)^{n+1} \leq \frac{3}{2} \frac{1}{2^{n+1}}
$$

Here we have used the fact that $|x| \leq 1 / 3$. To make sure that $\left|R_{n}(x)\right| \leq 10^{-4}$, we only need

$$
\frac{3}{2} \frac{1}{2^{n+1}}<10^{-4}
$$

By calculator, we see that $n \geq 13$ will do it. Thus, $n=13$ is a value of n such that we can guarantee the error is under the given threshold.

Note that for the problem as initially posed on $\left[-\frac{1}{2}, \frac{1}{2}\right]$ requires us to use the explicit error found above (using the geometric series).

Problem 2.

Let $g(x)=\frac{1}{2+3 x}$.
a. Derive a formula for the n 'th Taylor polynomial around $x_{0}=0$ called q_{n}, of g.
b. How large should n be so that g can be approximated by its n 'th Taylor polynomial with error not exceeding $\epsilon=10^{-5}$ for all $0<x<1 / 5$?

Solution

We will use a substitution shortcut to express g in relation to f, rather than re-deriving the series. Note that

$$
g(x)=\frac{1}{2+3 x}=\frac{1}{2} \frac{1}{1-\left(-\frac{3 x}{2}\right)}
$$

So with $y=-3 x / 2$,

$$
g(x)=\frac{1}{2} f(y)=\frac{1}{2}\left(p_{n}(y)+R_{n}(y)\right)=\frac{1}{2} \sum_{k=0}^{n}\left(-\frac{3 x}{2}\right)^{k}+\frac{1}{2} R_{n}\left(\frac{-3 x}{2}\right)
$$

So we get $g(x)=q_{n}(x)+E_{n}(x)$ where

$$
q_{n}(x)=\frac{1}{2} \sum_{k=0}^{n}\left(-\frac{3 x}{2}\right)^{k}, \quad E_{n}(x)=\frac{1}{2} R_{n}\left(-\frac{3 x}{2}\right)
$$

q_{n} is the n 'th Taylor polynomial and E_{n} is the remainder of function g. By Part (a), we know that

$$
R_{n}(y)=\frac{y^{n+1}}{(1-c)^{n+2}}
$$

for some c in between 0 and y. Now with $y=-3 x / 2$,

$$
R_{n}\left(-\frac{3 x}{2}\right)=\frac{\left(-\frac{3 x}{2}\right)^{n+1}}{(1-c)^{n+2}}
$$

for some c in between 0 and $-3 x / 2$. Because x varies between 0 and $1 / 5, c$ is somewhere between $-3 / 10$ and 0 . We estimate the size of the error term as follows.

$$
\left|E_{n}(x)\right|=\frac{1}{2}\left|R_{n}\left(-\frac{3 x}{2}\right)\right|=\frac{1}{2}\left(\frac{3 x}{2}\right)^{n+1} \frac{1}{(1-c)^{n+2}} \leq \frac{1}{2}\left(\frac{3 / 5}{2}\right)^{n+1}
$$

Here we have used the fact that $1-c$ is at least 1 , and x is at most $1 / 5$. To guarantee that $\left|E_{n}(x)\right|<10^{-5}$, we only need to choose n such that

$$
\frac{1}{2}\left(\frac{3 / 5}{2}\right)^{n+1}<10^{-5}
$$

By simply trying with a calculator, we see that $n \geq 8$ is sufficient.

Problem 3.

Let $h(x)=\frac{1}{1+x^{2}}$.
a. Derive a formula for the n 'th Taylor polynomial around $x_{0}=0$ called r_{n}, of h.
b. How large should n be so that h can be approximated by its n 'th Taylor polynomial with error not exceeding $\epsilon=10^{-5}$ for all $-0.4<x<0.5$?

Solution

We use a similar substitution method rather than finding the n-th derivative of h.

$$
h(x)=\frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}=f\left(-x^{2}\right)
$$

We have

$$
h(x)=f\left(-x^{2}\right)=p_{n}\left(-x^{2}\right)+R_{n}\left(-x^{2}\right)=\underbrace{\sum_{k=0}^{n}\left(-x^{2}\right)^{k}}_{r_{2 n}(x)}+\underbrace{R_{n}\left(-x^{2}\right)}_{Q_{2 n}(x)} .
$$

We have found the $(2 n)^{\prime}$ th Taylor polynomial of h :

$$
\begin{equation*}
r_{2 n}(x)=p_{n}\left(-x^{2}\right)=\sum_{k=0}^{n}\left(-x^{2}\right)^{k}=\sum_{k=0}^{n}(-1)^{k} x^{2 k} \tag{1}
\end{equation*}
$$

The remainder is $Q_{2 n}(x)=R_{n}\left(-x^{2}\right)$. We also observe that $r_{2 n+1}(x)=r_{2 n}(x)$ because all odd powers of x has coefficient equal to 0 . By Part (a), we know that

$$
R_{n}(y)=\frac{y^{n+1}}{(1-c)^{n+2}}
$$

for some c in between 0 and y. Now with $y=-x^{2}$,

$$
R_{n}\left(-x^{2}\right)=\frac{\left(-x^{2}\right)^{n+1}}{(1-c)^{n+2}}
$$

for some c in between 0 and $-x^{2}$. Because x varies between -0.4 and $0.5, c$ is somewhere between -0.25 and 0 . We estimate the size of the error term as follows.

$$
\left|Q_{2 n}(x)\right|=\frac{1}{2}\left|R_{n}\left(-x^{2}\right)\right|=\frac{1}{2}\left(x^{2}\right)^{n+1} \frac{1}{(1-c)^{n+2}} \leq \frac{1}{2}(0.25)^{n+1}
$$

Here we have used the fact that $1-c$ is at least 1 , and x^{2} is at most 0.25 . To guarantee that $\left|Q_{2 n}(x)\right|<10^{-5}$, we only need to choose n such that

$$
\frac{1}{2}(0.25)^{n+1}<10^{-5}
$$

By simply trying with a calculator, we see that $n \geq 7$ is sufficient.

Problem 4.

Write Matlab code using either a "for" loop or a "while" loop to compute the following sum:

$$
\sum_{k=1}^{10} \pi^{k} \prod_{j=1}^{k} \frac{2 j-1}{2 j}
$$

Solution

```
format long
total = 0;
for ii = 1:10
    prod = 1;
    for jj = 1:ii
        prod = prod*(2*jj-1)/(2*jj);
    end
    disp(total)
    total = total + pi^ii * prod;
end
disp(total)
```

Which prints
0
1.570796326794897
5.271897977203405
14.961359439797098
41.596657769407130
1.169061895720350e+02
$3.337820721070890 \mathrm{e}+02$
$9.664509171833797 e+02$
$2.829814475789768 \mathrm{e}+03$
$8.358525449880932 \mathrm{e}+03$
$2.485903534090570 \mathrm{e}+04$

So

$$
2.485903534090570 \times 10^{4} \approx \sum_{k=1}^{10} \pi^{k} \prod_{j=1}^{k} \frac{2 j-1}{2 j}
$$

