Homework 1

Due 1/17/2019

1. Let $f(t)=\frac{1}{1-t}$.
(a) Derive a formula for the n 'th Taylor polynomial about $t_{0}=0$, called $p_{n}(t)$, of f.
(b) How large should n be so that f can be approximated by its n 'th Taylor polynomial with error not exceeding $\epsilon=10^{-4}$ for all $-1 / 3<t<1 / 3$?
2. Let $g(x)=\frac{1}{2+3 x}$.
(a) Derive a formula for the n 'th Taylor polynomial about $x_{0}=0$, called $q_{n}(x)$, of g. Hint: use Problem 1.
(b) How large should n be so that g can be approximated by its n 'th Taylor polynomial with error not exceeding $\epsilon=10^{-5}$ for all $0<x<1 / 5$?
3. Let $h(x)=\frac{1}{1+x^{2}}$.
(a) Derive a formula for the n 'th Taylor polynomial about $x_{0}=0$, called $r_{n}(x)$, of h. Hint: use Problem 1.
(b) How large should n be so that h can be approximated by its n 'th Taylor polynomial with error not exceeding $\epsilon=10^{-5}$ for all $-0.4 \leq x \leq 0.5$?

Use Matlab Practice 1 posted on Canvas and course website as a practice (but don't turn in the problems in there). Then do the following problem.
4. Write Matlab code using either a "for" loop or a "while" loop to compute the following sum:

$$
\sum_{k=1}^{10} \pi^{k} \cdot \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \ldots \frac{2 k-1}{2 k}
$$

Make sure to write a few comments in your paper on how you do it. The code should be turned in on Canvas as an .m file.

