
MTH 351 HW #2 Grader’s solutions

Problem 1.

In this problem we will use Taylor approximation to approximate the integral

I =

∫ 2

1

ex − 1

x
dx

Denote f(x) = ex−1
x .

Part A

Derive a formula for the n′th Taylor polynomial around xn called pn(x) of f . Use the summation symbol to
write pn(x).

Solution

We would like to construct the power series, first

ex =

∞∑
k=0

xk

k!
= 1 +

∞∑
k=1

xk

k!
=⇒ ex − 1 =

∞∑
k=1

xk

k!

Then divide by x to obtain

ex − 1

x
=

1

x

∞∑
k=1

xk

k!
=

∞∑
k=1

xk−1

k!

Which generates a series representation of f . To construct pn, we truncate the function to obtain an n’th
degree polynomial.

pn(x) =

n+1∑
k=1

xk−1

k!
=

n∑
k=0

xk

(k + 1)!

The reason we sum to n + 1 is because when k = n + 1, k − 1 = (n + 1) − 1 = n resulting with an n’th
degree polynomial. We can shift the indices (done in the right summation) to get a more compact answer.
Both formats are acceptable.

Part B

Write the integral In =
∫ 2

1
pn(x)dx in sigma-notation format without the

∫
.

Solution

As our series is finite, we can first interchange the summation and integral operation (note: this is may not
hold for arbitrary infinite summations)

In =

∫ 2

1

pn(x)dx =

∫ 2

1

n+1∑
k=1

xk−1

k!
dx =

n+1∑
k=1

∫ 2

1

xk−1

k!
dx =

n+1∑
k=1

xk

k(k!)

∣∣∣∣x=2

x=1

=

n+1∑
k=1

2k − 1

k(k!)
=

n∑
k=0

2k+1 − 1

(k + 1)((k + 1)!)

Both 0 or 1 based indexing are acceptable.
Part C

How large should n be such that In approximates I with error less than ε = 10−5.

Solution

Let Rn(x) be the remainder of the n’th Taylor expansion of f(x):

f(x) = pn(x) +Rn(x)

Winter 2020

MTH 351 HW #2 Grader’s solutions

We have

I =

∫ 2

1

f(x)dx =

∫ 2

1

pn(x)dx+

∫ 2

1

Rn(x)dx = In +

∫ 2

1

Rn(x)dx.

Thus,

I − In =

∫ 2

1

Rn(x)dx.

We want to find a bound for the quantity |I − In| that only depends on n. By triangle inequality,

|I − In| =
∣∣∣∣∫ 2

1

Rn(x)dx

∣∣∣∣ ≤ ∫ 2

1

|Rn(x)|dx. (∗)

The problem becomes how to bound the error term |Rn(x)|. It is difficult to apply Lagrange’s theorem to
function f(x) to bound Rn(x). The reason is that the derivatives f ′, f ′′, f ′′′,. . . get complicated very quickly.
Instead, we will work through the function g(x) = ex because we can easily apply Lagrange’s theorem to
this function. We have

g(x) = ex = 1 +
x

1!
+
x2

2!
+ · · ·+ xn

n!︸ ︷︷ ︸
qn(x)

+
xn+1

(n+ 1)!
+ · · ·︸ ︷︷ ︸

rn(x)

Here qn(x) is the n’th Taylor polynomial of g(x), and rn(x) is the corresponding error term. Let us subtract
1 from both sides:

ex − 1 =
x

1!
+
x2

2!
+ · · ·+ xn

n!
+ rn(x).

Let us divide both sides by x :

ex − 1

x
=

1

1!
+
x

2!
+ · · ·+ xn−1

n!
+
rn(x)

x
.

This is a sum of an (n− 1)′st polynomial and an error term. Hence,

pn−1(x) =
1

1!
+
x

2!
+ · · ·+ xn−1

n!
,

Rn−1(x) =
rn(x)

x
.

Note that Rn−1(x) is the error term that comes from f , while rn(x) is the error term that comes from g.

They are related to each other by Rn−1(x) = rn(x)
x . By replacing n by n+ 1, we can write

Rn(x) =
rn+1(x)

x
.

Now we can use Lagrange’s theorem for function g in order to write rn+1. It says that

rn+1(x) =
g(n+2)(c)

(n+ 2)!
xn+2 =

ec

(n+ 2)!
xn+2

for some c in between 0 and x. Thus,

Rn(x) =
rn+1(x)

x
=

ec

(n+ 2)!
xn+1.

Since we are integrating f over the interval [1, 2], we only interested in x ∈ [1, 2]. Since c is in between 0 and
x, it is in between 0 and 2. Thus,

|Rn(x)| = ec

(n+ 2)!
xn+1 ≤ e2

(n+ 2)!
2n+1 <

9

(n+ 2)!
2n+1.

Winter 2020

MTH 351 HW #2 Grader’s solutions

We then substitute this number into (*) and get

|I − In| ≤
∫ 2

1

|Rn(x)|dx ≤
∫ 2

1

9

(n+ 2)!
2n+1dx =

9

(n+ 2)!
2n+1.

In order for |I − In| to be less than 10−5, we only need to choose a large n such that

9

(n+ 2)!
2n+1 < 10−5.

By calculator, we see that n = 11 will do it.
Part D

With a value of n found in part C, write a Matlab code to compute In. (Hint: use the int function to
approximate I)

Solution

A simple code to compute In with n = 11 is as follows:

n = 11;

s = 0;

for k = 0:n

s = s + (2^(k+1)-1)/(k+1)/factorial(k+1);

end

s

For those who are interested in learning more functions in Matlab, a more decorated code is as follows.

format long % Only need this once

% Now find the value for the integral using built in functions

f = @(x) (exp(x) - 1)./x;

integral_numerical = integral(f,1,2);

syms x

objective_function = (exp(x) - 1)/x;

% default behavior for int is to integrate wrt x if it finds x

integral_exact = int(objective_function , [1 2]);

disp(strcat('The symbolic integral result is I=', num2str(double(

integral_exact) ,10)))

disp(strcat('The approximation using the integral function is I=', num2str

(integral_numerical ,10)))

num_samples = 12;

approximation_I = zeros(num_samples ,1);

error_I = zeros(num_samples , 1);

for poly_degree = 1: num_samples

approximation_I(poly_degree) = series_approx(poly_degree); %Get the

approximation

error_I(poly_degree) = abs(approximation_I(poly_degree) -

integral_exact); % find the error

end

%Now we look at the vector of errors to find the first index

error_tol = 10^(-5);

[~, best_index] = max(error_I <= error_tol);

Winter 2020

MTH 351 HW #2 Grader’s solutions

disp(strcat('The smallest n that satisfies the error bound is n=', num2str

(best_index)))

disp(strcat('The first I_n that satisfies the error bound is I_', num2str(

best_index), '=', num2str(approximation_I(best_index) ,10)))

function sum_running = series_approx(degree)

sum_running = 0;

for index = 1: degree

sum_running = sum_running + (2^(index) - 1)./(index .* factorial(

index));

end

end

This prints to console the following output.

The symbolic integral result is I=2.365969359

The approximation using the integral function is I=2.365969359

The smallest n that satisfies the error bound is n=10

The first I_n that satisfies the error bound is I_10=2.365963868

As 10 ≤ 11, the bound we derived from the error formula is quite good.

Problem 2.

Let us consider the following toy model of the IEEE double precision floating point format. This toy model
makes it simpler to demonstrate how addition and multiplication of floating-point numbers work. The
sequence of 8 bits

c0b1b2b3b4a1a2a3

represents a number x = σx̄2e where σ, x̄, e are determined as follows:

σ =

{
1 if c0 = 0

−1 if c0 = 1

E = (b1b2b3b4)2

• If 1 ≤ E ≤ 14 then

e = E − 7

x̄ = (1.a1a2a3)2

• if E = 0 then e = −6 and x̄ = (a1a2a3)2

• if E = 15 then x = ±∞ (depending on the sign σ)

Part A

Find the dynamic range of this floating point format.

Solution

The largest number M can be represented with e = 7 and x̄ = 1.111, so M = 1.1112×27 ≈ 28. The smallest
number m can be represented with e = −7 and x̄ = 0.001, so m ≈ 1× 2−10. Then the dynamic range Dr is

Dr = 28

1×2−10 = 218.

Part B

What numbers are represented by the sequences 11001001, 00000000, 11111000?

Winter 2020

MTH 351 HW #2 Grader’s solutions

Solution

11001001. We decompose this into the terms

• c0 = 1 =⇒ σ = −1

• E = 10012 =⇒ E10 = 8 + 1 = 9 =⇒ e = 2

• x̄ = 1.0012

Then we can construct the base 2 value of this bit-sequence as −1.0012 × 22.

0000000. We decompose this into the terms

• c0 = 0 =⇒ σ = 1

• E = 00002 =⇒ E10 = 0 =⇒ e = −6

• E = 0 =⇒ x̄ = 0.0002

Then we can construct the base 2 value of this bit-sequence as 0.0002 × 2−6.

11111000. We decompose this into the terms

• c0 = 1 =⇒ σ = −1

• E = 11112 =⇒ E10 = 8 + 4 + 2 + 1 =⇒ e =∞

Having obtained an E = 15 and σ = −1, we can stop here as it must be that x̄ = −∞. We do not need to
extract the values of x̄ from the bit sequence a1a2a3 as the values of the bit sequence lack meaning in this
context.

Problem 3.

The are only 256 different sequences of 8 bits. Thus, the sequence of 8 bits in problem 2 cannot represent
precisely every real number. It can represent precisely only 242 real numbers and ±∞ (14 possible binary
encodings). However any real number can be represented approximately by a bit sequence. The principle
is simple: given a real number x we look for the number y among those 256 numbers that is closest to x.
Then x is represented by the bit sequence that exactly represents y.

The method is as follows:

• Write x in binary form. For example, 6.3 = (110.010011001 . . .)2.

• Shift the binary point to the form 1.c1c2c3 . . .2 by choosing an exponent −6 ≤ e ≤ 7 (an integer). For
example 6.3 = (1.10010011001 . . .)× 22.

• Round the mantissa to 3 digits after the binary point (the dot). For example 6.3 ≈ (1.1012)× 22.

• Decompose into pieces to find the values of x̄, σ, e. Then construct the bit sequence encoding σ, e, x̄
according to the floating point format.

Note that in the second step, it may be impossible to choose an e that satisfies −6 ≤ e ≤ 7. If e is ‘too big’,
±∞ is recorded depending on σ. If e < −6, we can shift the decimal one digit to the left (and potentially
loose one value of precision), from (1.c1c2c3 . . .)2 to (0.1c1c2 . . .)2. The new exponent is e+ 1. If e = −6 we
can proceed. If e < −6 still, then we declare the number ‘too close to zero’ for this floating point format
and thus is best approximated by 0.

Part A

Represent the decimal numbers 1, 5.5, 12.9, 1000, and 0.0001 in the floating point format x = σx̄e2 and bit
sequence described in problem 2.

Winter 2020

MTH 351 HW #2 Grader’s solutions

Solution

1. 1 = 1.0002 × 20. Here e = 7, σ = 1, and x̄ = 1.000. The bit sequence is 00111000.

2. 5.5 = 1.0112 × 22. Here E = 9, σ = 1, and x̄ = 1.0112. The corresponding bit sequence is 01001011.

3. 12.9 = 1.100111001100110011 . . .2 × 23. As this contains more than 4 values in the binary expansion,
we approximate this sequence with 12.9 ≈ 1.10102 × 23. Here E = 10, σ = 1, and x̄ = 1.0102. The
corresponding bit sequence is 01010010.

4. 1000 = 11111010002×20 = 1.1111010002×210. Here E = 10+7 = 17 > 14 So as σ = 1 we approximate
this value with +∞. So 100010 ≈ ∞2. There are multiple corresponding bit sequences that we can
use. There is some ambiguity in our choice of bit-wise encoding. Valid bit sequences are of the form
01111 ∗ ∗∗ where ∗ denotes either a 0 or a 1.

5. 0.0001 = 1.10100011011011100 . . .2×2−14. As this contains more than 4 values in the binary expansion,
we approximate this sequence with 0.0001 ≈ 1.1012 × 2−14. As −14 + 1 < −6, it is not possible to
increment the exponent (−14→ −13) to fit the format. E < 0 is required, so this number is too close
to 0 for this floating point format. So 0.0001 is approximately 0×2−13, with the bit sequence 0000000.
The last three bits a1a2a3 are set to zero to ensure that when the bit sequence is converted back to a
binary number we do not ‘acquire’ any new values.

Part B

Find the smallest number larger than 5.5 that can be represented precisely by the floating point format in
Problem 2. Repeat this for 12.9 and 100.25.

Solution

Our strategy here is to find the smallest floating point number larger than our target number (5.5, 12.9 or
100.25). To do this, we compute the approximation of our target number and round up to the ‘next’ floating
point number (floating point numbers are finite in R, therefor not dense). Then we will convert this number
from binary to decimal. We will denote our target as x.

1. Let x = 5.5. From above, we know that the binary encoding of x is 101.12. As 5.5 can be exactly
represented in floating point format, we do not need to truncate the representation. To round up, we
add 0.12 to 101.12 to obtain 110.02 = 1102. Then y = 22 + 21 + 0 = 6. 6 is the next floating point
number.

2. Let x = 12.9. From above, we know that x2 ≈ 1100.1110011 . . .2 = 1.1001110011 . . .2 × 23. Then the
next smallest number is 1.1012 × 23 = 11012 = 1 + 4 + 8 = 13. 13 is the next smallest floating point
number that can be represented exactly in this floating point format.

3. Let x = 100.25. We compute x = 1.10010001226. We round up to the next floating point number
1.1012 × 26 = 104. 104 is the next smallest floating point number that can be represented exactly in
this floating point format.

Winter 2020

