Homework 2

Due 01/27/2020

1. In this problem, we will use Taylor approximation to approximate the integral

$$I = \int_1^2 \frac{e^x - 1}{x} dx.$$

Let us denote $f(x) = \frac{e^x - 1}{x}$.

- (a) Derive a formula for the n'th Taylor polynomial about x₀ = 0, called p_n(x), of f. Use the summation symbol Σ to write p_n(x). *Hint: use the Taylor approximation of the function e^x*.
- (b) Write the integral $I_n = \int_1^2 p_n(x) dx$ using Σ symbol and without integral signs.
- (c) How large should n be so that I_n approximates I with an error less than $\epsilon = 10^{-5}$?
- (d) With a value of n found in Part (c), write a Matlab code to compute I_n . Matlab has a built-in function called 'int' to compute approximately I. Try the following:

format long
f = @(x) (exp(x)-1)./x
integral(f,1,2)

Double check if I_n indeed approximates I with error less than 10^{-5} .

2. Let us consider the following toy model of the IEEE double precision floating-point format. This toy model makes it simpler to demonstrate how addition and multiplication of floating-point numbers work.

The sequence of 8 bits

$$\underbrace{c_0}_{\text{sign part}} \underbrace{b_1 \quad b_2 \quad b_3 \quad b_4}_{\text{exponent part}} \underbrace{a_1 \quad a_2 \quad a_3}_{\text{mantissa part}}$$

represents a number $x = \sigma \cdot \bar{x} \cdot 2^e$ where σ, \bar{x}, e are determined as follows:

$$\sigma = \begin{cases} 1 & \text{if } c_0 = 0, \\ -1 & \text{if } c_0 = 1, \end{cases}$$
$$E = (b_1 b_2 b_3 b_4)_2$$

• If $1 \le E \le 14$ then

$$e = E - 7,$$

 $\bar{x} = (1.a_1a_2a_3)_2$

- If E = 0 then e = -6 and $\bar{x} = (0.a_1a_2a_3)_2$.
- If E = 15 then $x = \pm \infty$ (depending on the sign σ).
- (a) Find the dynamic range and machine epsilon of this floating-point number format.
- (b) What numbers are represented by the bit sequences 11001001, 00000000, 11111000?

3. There are only 256 different sequences of 8 bits. Thus, the sequence of 8 bits in Problem 2 cannot represent precisely every real number. It can represent *precisely* only 254 real numbers and $\pm \infty$. However, any real number can be represented *approximately* by a bit sequence. The principle is simple: given a real number x, we look for the number y among those 256 numbers that is closest to x. Then x is represented by the bit sequence that represents y.

The method is as follows:

- Write x is binary form. For example, $6.3 = (110.010011001...)_2$.
- Shift the binary point to the form $1.c_1c_2c_3...$ by choosing an exponent $-6 \le e \le 7$. For example, $6.3 = (1.10010011001...)_2 \times 2^2$.
- Round the mantissa to 3 digits after the dot. For example, $6.3 \approx (1.101)_2 \times 2^2$.
- Find the value of σ , \bar{x} , e. For example, these values in the case x = 6.3 are $\sigma = 1$, $\bar{x} = (1.101)_2$ and e = 2. The bit sequence that represents 6.3 is therefore 01001101.

Note that in the second step, it may be impossible to choose e between -6 and 7. An example is when e > 7. In this case, the number is "too big" and is approximated by $\pm \infty$ (depending on the sign σ). Another example is when e < -6. In this case, one will shift the binary point one digit to the left to get the form $(0.1c_1c_2c_3...)_2$. The new exponent is now e + 1. If the new exponent is equal to -6 then one proceeds to Step 3 and 4. If the new exponent is still less than -6, the number x is "too close to zero" and thus is approximated by 0.

- (a) Represent the decimal numbers 1, 5.5, 12.9, 1000, 0.0001 in the floating-point format $x = \sigma \cdot \bar{x} \cdot 2^e$ and bit sequence described in Problem 2.
- (b) Find the smallest number larger than 5.5 that can be represented precisely by the floatingpoint format in Problem 2. The same question for 12.9 and 100.25.