
Homework 2

Due 01/27/2020

1. In this problem, we will use Taylor approximation to approximate the integral

I =

∫ 2

1

ex − 1

x
dx.

Let us denote f(x) = ex−1
x .

(a) Derive a formula for the n’th Taylor polynomial about x0 = 0, called pn(x), of f . Use
the summation symbol Σ to write pn(x).
Hint: use the Taylor approximation of the function ex.

(b) Write the integral In =
∫ 2
1 pn(x)dx using Σ symbol and without integral signs.

(c) How large should n be so that In approximates I with an error less than ε = 10−5 ?

(d) With a value of n found in Part (c), write a Matlab code to compute In. Matlab has a
built-in function called ‘int’ to compute approximately I. Try the following:

format long

f = @(x) (exp(x)-1)./x

integral(f,1,2)

Double check if In indeed approximates I with error less than 10−5.

2. Let us consider the following toy model of the IEEE double precision floating-point format.
This toy model makes it simpler to demonstrate how addition and multiplication of floating-
point numbers work.

The sequence of 8 bits
c0︸︷︷︸

sign part

b1 b2 b3 b4︸ ︷︷ ︸
exponent part

a1 a2 a3︸ ︷︷ ︸
mantissa part

represents a number x = σ · x̄ · 2e where σ, x̄, e are determined as follows:

σ =

{
1 if c0 = 0,
−1 if c0 = 1,

E = (b1b2b3b4)2

• If 1 ≤ E ≤ 14 then

e = E − 7,

x̄ = (1.a1a2a3)2

• If E = 0 then e = −6 and x̄ = (0.a1a2a3)2.

• If E = 15 then x = ±∞ (depending on the sign σ).

(a) Find the dynamic range and machine epsilon of this floating-point number format.

(b) What numbers are represented by the bit sequences 11001001, 00000000, 11111000 ?

1



3. There are only 256 different sequences of 8 bits. Thus, the sequence of 8 bits in Problem 2
cannot represent precisely every real number. It can represent precisely only 254 real numbers
and ±∞. However, any real number can be represented approximately by a bit sequence. The
principle is simple: given a real number x, we look for the number y among those 256 numbers
that is closest to x. Then x is represented by the bit sequence that represents y.

The method is as follows:

• Write x is binary form. For example, 6.3 = (110.010011001 . . .)2.

• Shift the binary point to the form 1.c1c2c3 . . . by choosing an exponent −6 ≤ e ≤ 7. For
example, 6.3 = (1.10010011001 . . .)2 × 22.

• Round the mantissa to 3 digits after the dot. For example, 6.3 ≈ (1.101)2 × 22.

• Find the value of σ, x̄, e. For example, these values in the case x = 6.3 are σ = 1,
x̄ = (1.101)2 and e = 2. The bit sequence that represents 6.3 is therefore 01001101.

Note that in the second step, it may be impossible to choose e between −6 and 7. An example
is when e > 7. In this case, the number is “too big” and is approximated by ±∞ (depending
on the sign σ). Another example is when e < −6. In this case, one will shift the binary point
one digit to the left to get the form (0.1c1c2c3 . . .)2. The new exponent is now e + 1. If the
new exponent is equal to −6 then one proceeds to Step 3 and 4. If the new exponent is still
less than −6, the number x is “too close to zero” and thus is approximated by 0.

(a) Represent the decimal numbers 1, 5.5, 12.9, 1000, 0.0001 in the floating-point format
x = σ · x̄ · 2e and bit sequence described in Problem 2.

(b) Find the smallest number larger than 5.5 that can be represented precisely by the floating-
point format in Problem 2. The same question for 12.9 and 100.25.

2


