
MTH 351 HW #3 Grader’s solutions

Problem 1.

In approximation theory, there is an well-known result called Weierstrass theorem (1885). It says that: given
a continuous function f defined on an interval [a, b] and a prescribed error ε, one can always approximate
f by a polynomial on [a, b] such that the error is under ε. In this problem, we will find explicitly such a
polynomial using Taylor polynomial (without invoking Weierstrass theorem).

1. Find a polynomial P such that

max
x∈[2,4]

| cos(x2)− P (x)| < 10−3.

Hint: use the fact that cos(t) = 1− t2

2! + t4

4! −
t6

6! + . . .

2. Plot function f(x) = cos(x2) and function P (x) which you found in Part (a) on the interval [2, 4] on
the same plot.
Note: the graphs might be too close to each other to distinguish.

Solution

cos(t) =

∞∑
k=0

(−1)k
t2k

(2k)!

t=x2

=⇒ cos(x2) =

∞∑
k=0

(−1)k
x4k

(2k)!

We can extract pn by truncating the infinite series into a finite series. Our strategy is to find pn that
satisfies the error bound, then label this polynomial as P .

p4n(x) =

n∑
k=0

(−1)k
x4k

(2k)!
.

The error of the (4n)’th Taylor approximation of function f(x) is R4n(x) = f(x)− p4n(x). It is difficult to
estimate R4n using Lagrange theorem for f because the higher derivatives of f are messy. Instead, we will
go through function g(t) = cos t. We know that

g(t) = cos(t) =

∞∑
k=0

(−1)k
t2k

(2k)!
= q2n(t) + r2n(t)

where q2n(t) =
∑n

k=0(−1)k t2k

(2k)! . Replace t by x2,

f(x) = g(x2) =

∞∑
k=0

(−1)k
x4k

(2k)!
= q2n(x2) + r2n(x2).

Note that q2n(x2) = p4n(x). Thus, the remainder term of f and the remainder term of g are related to each
other by R4n(x) = r2n(x2). We can use Lagrange theorem to estimate r2n(t).

r2n(t) =
g(2n+1)(c)

(2n+ 1)!
t2n+1

for some c in between 0 and t. Then

R4n(x) = r2n(x2) =
g(2n+1)(c)

(2n+ 1)!
x2(2n+1)

for some c in between 0 and x2. We know that the derivatives of g can only be cos, sin,− sin,− cos, which
are always in between −1 and 1. Thus, |g(2n+1)(c)| ≤ 1. We get

|R4n(x)| ≤ x4n+2

(2n+ 1)!
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We want to find n such that x4n+2

(2n+1)! < 10−3 for all x ∈ [2, 4]. For this, we only need to find n such that

44n+2

(2n+ 2)!
< 10−3

With a calculator we can see that n ≥ 24 will do it. As we are looking for the associated polynomial degree,
we require the 96’nd degree polynomial. Thus

P (x) =

24∑
k=0

(−1)k
x4k

(2k)!

We plot the value (required) and we cannot see both lines. To see just how good our approximation is, we
can plot the absolute error.

1 x_vals = linspace (2,4,200); % Make some data

2 cos_exact = cos(x_vals .^2); % Exact values

3 cos_approx = P_sum(x_vals); % Series approximation

4
5 % Now let 's make a figure of our solutions

6 f1 = figure ();

7 plot(x_vals , cos_exact)

8 plot(x_vals , cos_approx)

9 xlabel('x')
10 ylabel('y')
11 title('A plot of exact and approximate solutions ')
12 saveas(gcf , 'MTH_351_HW3_1A ', 'epsc')
13
14 % Let 's look at the error

15 f2 = figure ();

16 plot(x_vals , abs(cos_exact - cos_approx))

17 xlabel('x')
18 ylabel('error magnitude ')
19 title('Magnitude of the error ')
20 saveas(gcf , 'MTH_351_HW3_1B ', 'epsc')
21
22
23 function value = P_sum(x)

24 value = 0;

25 for degree = 0:23

26 value = value + (-1)^( degree) * x.^(4* degree)/( factorial (2* degree)

);

27 end

28 end
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A plot of exact and approximate solutions
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10 -4 Magnitude of the error

Problem 2.

Consider the toy model of the IEEE double precision floating-point format as described in Homework 2.
Perform the following operations on floating-point numbers. Write your final answers in both floating-point
format and decimal format.

1. (1.001)2 × 22 + (1.100)2 × 24

2. (0.010)2 × 2−6 + (1.001)2 × 22

3. (1.101)2 × 27 + (1.000)2 × 27

4. (0.001)2 × 2−3 × (1.110)2 × 2−4

What do you notice when adding two numbers of quite different sizes?
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Solution

1. (1.001)2 × 22 + (1.100)2 × 24 = 100.12 + 1100002 = 1110012 = 1.110012 × 24 ≈ 1.1102 × 24 = 28 (the
exact value is 28.5)

2. (0.010)2×2−6 + (1.001)2×22 = 0.0000000102 + 100.12 = 100.100000012 ≈ 100.12 = 1.0012×22 = 4.5
(exact value is 4.50390625).

3. (1.101)2 × 27 + (1.000)2 × 27 = 110100002 + 100000002 = 1010100002 ≈ 1.011 × 28 = 352. This
number is too big for our floating point format (8 > 7) so the result is ∞ in floating point format (the
exact answer is 336 in decimal)

4. (0.001)2 × 2−3 × (1.110)2 × 2−4 = 0.0000012 × 0.00011102 = 1.110 × 2−10 = 0.001708984375. This
value is too small to be stored in the floating point format (−10 < −7) so the number stored in the
floating point format is 0.

If two numbers are of different enough sizes, we will loose many (or all!) of the values from the smaller
number when working in floating point format. We see this in 2 above, where 4.5 + 0.00390625 = 4.5 in
floating point.

Problem 3.

On an attempt to have Matlab compute the sum S = 0.1+0.2+ . . .+0.9, someone writes the following code:

s = 0

x = 0

while x~=1.0

s = s + x

x = x + 0.1

end

S = s

1. Test this code on Matlab. Why does the program keep running indefinitely?
Note: to terminate the procedure, place the cursor in the command window and press Ctrl + C.

2. What should be changed in the code to make it stop?

Solution

This program runs indefinitely as the while loop never exists. This occurs when the logical test (x ∼= 1.0)
never returns true. The value of x is stored in a floating point format and is subject to truncation error. As
a result, 0.1 is not exactly stored in the floating point format. Analytically, we require an infinity of values
to store 0.1 (0.1 ≈ 0.00011001100110011001101 . . .2) even through we can store 1 with exactly one bit.

If we want the code to stop (which we generally do) we have several options.

1. Change x ∼= 1 to x < 1.

2. perform the calculation with integer data types (integers can be compared exactly) and then divide to
obtain a floating point result.

3. Use a for loop instead of a while-loop and precompute how many iterations you need to do (anything
you can do with a ‘for’ loop you can do with a ‘while’ loop).
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Problem 4.

On an attempt to have Matlab compute the sum S = 1 + 2 + . . .+ 9, a person writes the following code:

s = 0

x = 0

while x~=10

s = s + x

x = x + 1

end

S = s

1. Test this code on Matlab. Does the program keep running indefinitely?

2. What causes the difference compared to Problem 3?

Solution

This program terminates (in finite time!) and does not run indefinitely.

We can represent sufficiently small integers exactly in a floating point format. Unlike above, we do not
need to truncate x or s to fit into memory.

Problem 5.

In this problem, we will compute approximately a real root of the equation x3 − x2 − 1 = 0.

1. Graph the function f(x) = x3 − x2 − 1 on the interval [a0, b0] = [0, 2].

2. Use the bisection method to find the interval [a4, b4].

3. Approximate the root of f(x) = 0 with error not exceeding 10−2.

Solution

We can plot this in Matlab.

1 x_vals = linspace (0,2,200);

2 y_vals = f(x_vals); % Defined below

3 zero_vec = zeros (1 ,200);

4 f3 = figure ();

5 plot(x_vals , y_vals) % The function

6 hold on

7 plot(x_vals , zero_vec , ':r') % Let 's add the x-axis

8 xlabel('x')
9 ylabel('f(x)')

10 title('Objective function on [0,2]')
11 hold off

12 saveas(gcf , 'MTH_351_HW3_3A ', 'epsc')
13
14 function out = f(in)

15 out = in.^3 - in .^2 - 1;

16 end
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Objective function on [0,2]

We can see by inspection of the plot that the root should be near 1.5.

Bisection method

We can collect our results into a table.

n an bn sgn
(
f
(
an+bn

2

))
0 0 2 -

1 1 2 +

2 1 3
2 -

3 5
4

3
2 -

4 11
8

3
2 -

And we find [a4, b4] =
[
11
8 ,

3
2

]
.

To determine how many iterations we must perform, we need to bound the error, so we need to find the
smallest n such that

10−2 <
1

2n
· (2− 0) =

1

2n−1

We can check this quickly in a calculator and find that n = 8 is the smallest integer n such that we can
guarantee that the root is within the interval. Thus c8 is a sufficient approximation. (You can s)
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n an bn sgn
(
f
(
an+bn

2

))
4 11

8
3
2 -

5 23
16

3
2 +

6 23
16

47
32 -

7 93
64

47
32 -

8 187
128

47
32 -

(You may use a calculator to find the midpoints rather than working with fractions.) Our estimate is 187
128 .

Computing the root x? : f(x?) = 0 with a computer algebra system, we see that
∣∣ 187
128 − x

?
∣∣ = 0.0046337 . . . <

10−2. as desired.
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