## Problem 1.

In approximation theory, there is an well-known result called Weierstrass theorem (1885). It says that: given a continuous function $f$ defined on an interval $[a, b]$ and a prescribed error $\epsilon$, one can always approximate $f$ by a polynomial on $[a, b]$ such that the error is under $\epsilon$. In this problem, we will find explicitly such a polynomial using Taylor polynomial (without invoking Weierstrass theorem).

1. Find a polynomial $P$ such that

$$
\max _{x \in[2,4]}\left|\cos \left(x^{2}\right)-P(x)\right|<10^{-3}
$$

Hint: use the fact that $\cos (t)=1-\frac{t^{2}}{2!}+\frac{t^{4}}{4!}-\frac{t^{6}}{6!}+\ldots$
2. Plot function $f(x)=\cos \left(x^{2}\right)$ and function $P(x)$ which you found in Part (a) on the interval [2,4] on the same plot.
Note: the graphs might be too close to each other to distinguish.

## Solution

$$
\cos (t)=\sum_{k=0}^{\infty}(-1)^{k} \frac{t^{2 k}}{(2 k)!} \stackrel{t=x^{2}}{\Longrightarrow} \cos \left(x^{2}\right)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{4 k}}{(2 k)!}
$$

We can extract $p_{n}$ by truncating the infinite series into a finite series. Our strategy is to find $p_{n}$ that satisfies the error bound, then label this polynomial as $P$.

$$
p_{4 n}(x)=\sum_{k=0}^{n}(-1)^{k} \frac{x^{4 k}}{(2 k)!} .
$$

The error of the (4n)'th Taylor approximation of function $f(x)$ is $R_{4 n}(x)=f(x)-p_{4 n}(x)$. It is difficult to estimate $R_{4 n}$ using Lagrange theorem for $f$ because the higher derivatives of $f$ are messy. Instead, we will go through function $g(t)=\cos t$. We know that

$$
g(t)=\cos (t)=\sum_{k=0}^{\infty}(-1)^{k} \frac{t^{2 k}}{(2 k)!}=q_{2 n}(t)+r_{2 n}(t)
$$

where $q_{2 n}(t)=\sum_{k=0}^{n}(-1)^{k} \frac{t^{2 k}}{(2 k)!}$. Replace $t$ by $x^{2}$,

$$
f(x)=g\left(x^{2}\right)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{4 k}}{(2 k)!}=q_{2 n}\left(x^{2}\right)+r_{2 n}\left(x^{2}\right)
$$

Note that $q_{2 n}\left(x^{2}\right)=p_{4 n}(x)$. Thus, the remainder term of $f$ and the remainder term of $g$ are related to each other by $R_{4 n}(x)=r_{2 n}\left(x^{2}\right)$. We can use Lagrange theorem to estimate $r_{2 n}(t)$.

$$
r_{2 n}(t)=\frac{g^{(2 n+1)}(c)}{(2 n+1)!} t^{2 n+1}
$$

for some $c$ in between 0 and $t$. Then

$$
R_{4 n}(x)=r_{2 n}\left(x^{2}\right)=\frac{g^{(2 n+1)}(c)}{(2 n+1)!} x^{2(2 n+1)}
$$

for some $c$ in between 0 and $x^{2}$. We know that the derivatives of $g$ can only be $\cos , \sin ,-\sin ,-\cos$, which are always in between -1 and 1 . Thus, $\left|g^{(2 n+1)}(c)\right| \leq 1$. We get

$$
\left|R_{4 n}(x)\right| \leq \frac{x^{4 n+2}}{(2 n+1)!}
$$

We want to find $n$ such that $\frac{x^{4 n+2}}{(2 n+1)!}<10^{-3}$ for all $x \in[2,4]$. For this, we only need to find $n$ such that

$$
\frac{4^{4 n+2}}{(2 n+2)!}<10^{-3}
$$

With a calculator we can see that $n \geq 24$ will do it. As we are looking for the associated polynomial degree, we require the 96 'nd degree polynomial. Thus

$$
P(x)=\sum_{k=0}^{24}(-1)^{k} \frac{x^{4 k}}{(2 k)!}
$$

We plot the value (required) and we cannot see both lines. To see just how good our approximation is, we can plot the absolute error.

```
x_vals = linspace(2,4,200); % Make some data
cos_exact = cos(x_vals.^2); % Exact values
cos_approx = P_sum(x_vals); % Series approximation
% Now let's make a figure of our solutions
f1 = figure();
plot(x_vals, cos_exact)
plot(x_vals, cos_approx)
xlabel('x')
ylabel('y')
title('A plot of exact and approximate solutions')
saveas(gcf, 'MTH_351_HW3_1A', 'epsc')
% Let's look at the error
f2 = figure();
plot(x_vals, abs(cos_exact - cos_approx))
xlabel('x')
ylabel('error magnitude')
title('Magnitude of the error')
saveas(gcf, 'MTH_351_HW3_1B', 'epsc')
function value = P_sum(x)
    value = 0;
    for degree = 0:23
        value = value + (-1)^(degree) * x.^(4*degree)/(factorial(2*degree)
            );
    end
end
```



## Problem 2.

Consider the toy model of the IEEE double precision floating-point format as described in Homework 2. Perform the following operations on floating-point numbers. Write your final answers in both floating-point format and decimal format.

1. $(1.001)_{2} \times 2^{2}+(1.100)_{2} \times 2^{4}$
2. $(0.010)_{2} \times 2^{-6}+(1.001)_{2} \times 2^{2}$
3. $(1.101)_{2} \times 2^{7}+(1.000)_{2} \times 2^{7}$
4. $(0.001)_{2} \times 2^{-3} \times(1.110)_{2} \times 2^{-4}$

What do you notice when adding two numbers of quite different sizes?

## Solution

1. $(1.001)_{2} \times 2^{2}+(1.100)_{2} \times 2^{4}=100.1_{2}+110000_{2}=111001_{2}=1.11001_{2} \times 2^{4} \approx 1.110_{2} \times 2^{4}=28$ (the exact value is 28.5 )
2. $(0.010)_{2} \times 2^{-6}+(1.001)_{2} \times 2^{2}=0.000000010_{2}+100.1_{2}=100.10000001_{2} \approx 100.1_{2}=1.001_{2} \times 2^{2}=4.5$ (exact value is 4.50390625 ).
3. $(1.101)_{2} \times 2^{7}+(1.000)_{2} \times 2^{7}=11010000_{2}+10000000_{2}=101010000_{2} \approx 1.011 \times 2^{8}=352$. This number is too big for our floating point format $(8>7)$ so the result is $\infty$ in floating point format (the exact answer is 336 in decimal)
4. $(0.001)_{2} \times 2^{-3} \times(1.110)_{2} \times 2^{-4}=0.000001_{2} \times 0.0001110_{2}=1.110 \times 2^{-10}=0.001708984375$. This value is too small to be stored in the floating point format $(-10<-7)$ so the number stored in the floating point format is 0 .

If two numbers are of different enough sizes, we will loose many (or all!) of the values from the smaller number when working in floating point format. We see this in 2 above, where $4.5+0.00390625=4.5$ in floating point.

## Problem 3.

On an attempt to have Matlab compute the sum $S=0.1+0.2+\ldots+0.9$, someone writes the following code:

```
s = 0
x = 0
while x = =1.0
    s = s + x
    x = x + 0.1
end
S = S
```

1. Test this code on Matlab. Why does the program keep running indefinitely?

Note: to terminate the procedure, place the cursor in the command window and press Ctrl + C.
2. What should be changed in the code to make it stop?

## Solution

This program runs indefinitely as the while loop never exists. This occurs when the logical test ( $x \sim=1.0$ ) never returns true. The value of $x$ is stored in a floating point format and is subject to truncation error. As a result, 0.1 is not exactly stored in the floating point format. Analytically, we require an infinity of values to store $0.1(0.1 \approx 0.00011001100110011001101 \ldots 2)$ even through we can store 1 with exactly one bit.

If we want the code to stop (which we generally do) we have several options.

1. Change $x \sim=1$ to $x<1$.
2. perform the calculation with integer data types (integers can be compared exactly) and then divide to obtain a floating point result.
3. Use a for loop instead of a while-loop and precompute how many iterations you need to do (anything you can do with a 'for' loop you can do with a 'while' loop).

## Problem 4.

On an attempt to have Matlab compute the sum $S=1+2+\ldots+9$, a person writes the following code:

```
s = 0
x = 0
while x }\mp@subsup{x}{}{~}=1
    s = s + x
    x = x + 1
end
S = s
```

1. Test this code on Matlab. Does the program keep running indefinitely?
2. What causes the difference compared to Problem 3?

## Solution

This program terminates (in finite time!) and does not run indefinitely.
We can represent sufficiently small integers exactly in a floating point format. Unlike above, we do not need to truncate $x$ or $s$ to fit into memory.

## Problem 5.

In this problem, we will compute approximately a real root of the equation $x^{3}-x^{2}-1=0$.

1. Graph the function $f(x)=x^{3}-x^{2}-1$ on the interval $\left[a_{0}, b_{0}\right]=[0,2]$.
2. Use the bisection method to find the interval $\left[a_{4}, b_{4}\right]$.
3. Approximate the root of $f(x)=0$ with error not exceeding $10^{-2}$.

## Solution

We can plot this in Matlab.

```
x_vals = linspace(0,2,200);
y_vals = f(x_vals); % Defined below
zero_vec = zeros(1,200);
f3 = figure();
plot(x_vals, y_vals) % The function
hold on
plot(x_vals, zero_vec, ':r') % Let's add the x-axis
xlabel('x')
ylabel('f(x)')
title('Objective function on [0,2]')
hold off
saveas(gcf, 'MTH_351_HW3_3A', 'epsc')
function out = f(in)
    out = in.^3 - in .^2 - 1;
end
```



We can see by inspection of the plot that the root should be near 1.5.

## Bisection method

We can collect our results into a table.

| $n$ | $a_{n}$ | $b_{n}$ | $\operatorname{sgn}\left(f\left(\frac{a_{n}+b_{n}}{2}\right)\right)$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 2 | - |
| 1 | 1 | 2 | + |
| 2 | 1 | $\frac{3}{2}$ | - |
| 3 | $\frac{5}{4}$ | $\frac{3}{2}$ | - |
| 4 | $\frac{11}{8}$ | $\frac{3}{2}$ | - |

And we find $\left[a_{4}, b_{4}\right]=\left[\frac{11}{8}, \frac{3}{2}\right]$.
To determine how many iterations we must perform, we need to bound the error, so we need to find the smallest $n$ such that

$$
10^{-2}<\frac{1}{2^{n}} \cdot(2-0)=\frac{1}{2^{n-1}}
$$

We can check this quickly in a calculator and find that $n=8$ is the smallest integer $n$ such that we can guarantee that the root is within the interval. Thus $c_{8}$ is a sufficient approximation. (You can s)

| $n$ | $a_{n}$ | $b_{n}$ | $\operatorname{sgn}\left(f\left(\frac{a_{n}+b_{n}}{2}\right)\right)$ |
| :---: | :---: | :---: | :---: |
| 4 | $\frac{11}{8}$ | $\frac{3}{2}$ | - |
| 5 | $\frac{23}{16}$ | $\frac{3}{2}$ | + |
| 6 | $\frac{23}{16}$ | $\frac{47}{32}$ | - |
| 7 | $\frac{93}{64}$ | $\frac{47}{32}$ | - |
| 8 | $\frac{187}{128}$ | $\frac{47}{32}$ | - |

(You may use a calculator to find the midpoints rather than working with fractions.) Our estimate is $\frac{187}{128}$. Computing the root $x^{\star}: f\left(x^{\star}\right)=0$ with a computer algebra system, we see that $\left|\frac{187}{128}-x^{\star}\right|=0.0046337 \ldots<$ $10^{-2}$. as desired.

