Homework 3

Due 02/03/2020

Use Matlab Practice 2 posted on Canvas and course website as a practice before you start doing this homework.

1. In approximation theory, there is an well-known result called Weierstrass theorem (1885). It says that: given a continuous function f defined on an interval $[a, b]$ and a prescribed error ϵ, one can always approximate f by a polynomial on $[a, b]$ such that the error is under ϵ. In this problem, we will find explicitly such a polynomial using Taylor polynomial (without invoking Weierstrass theorem).
(a) Find a polynomial P such that

$$
\max _{x \in[2,4]}\left|\cos \left(x^{2}\right)-P(x)\right|<10^{-3} .
$$

Hint: use the fact that $\cos (t)=1-\frac{t^{2}}{2!}+\frac{t^{4}}{4!}-\frac{t^{6}}{6!}+\ldots$
(b) Plot function $f(x)=\cos \left(x^{2}\right)$ and function $P(x)$ which you found in Part (a) on the interval $[2,4]$ on the same plot.
Note: the graphs might be too close to each other to distinguish.
2. Consider the toy model of the IEEE double precision floating-point format as described in Homework 2. Perform the following operations on floating-point numbers. Write your final answers in both floating-point format and decimal format.
(a) $(1.001)_{2} \times 2^{2}+(1.100)_{2} \times 2^{4}$
(b) $(0.010)_{2} \times 2^{-6}+(1.001)_{2} \times 2^{2}$
(c) $(1.101)_{2} \times 2^{7}+(1.000)_{2} \times 2^{7}$
(d) $(0.001)_{2} \times 2^{-3} \times(1.110)_{2} \times 2^{-4}$ What do you notice when adding two numbers of quite different sizes?
3. On an attempt to have Matlab compute the sum $S=0.1+0.2+\ldots+0.9$, someone writes the following code:

$$
\begin{aligned}
& s=0 \\
& x=0 \\
& \text { while } x^{\sim}=1.0 \\
& \qquad \begin{array}{l}
s=s+x \\
x=x+0.1
\end{array} \\
& \text { end } \\
& S=s
\end{aligned}
$$

(a) Test this code on Matlab. Why does the program keep running indefinitely?

Note: to terminate the procedure, place the cursor in the command window and press $\mathrm{Ctrl}+\mathrm{C}$.
(b) What should be changed in the code to make it stop?
4. On an attempt to have Matlab compute the sum $S=1+2+\ldots+9$, a person writes the following code:

$$
\begin{aligned}
& s=0 \\
& x=0 \\
& \text { while } x^{\sim}=10 \\
& \qquad \begin{array}{r}
s=s+x \\
x=x+1
\end{array} \\
& \text { end } \\
& S=s
\end{aligned}
$$

(a) Test this code on Matlab. Does the program keep running indefinitely?
(b) What causes the difference compared to Problem 3?
5. In this problem, we will compute approximately a real root of the equation $x^{3}-x^{2}-1=0$.
(a) Graph the function $f(x)=x^{3}-x^{2}-1$ on the interval $\left[a_{0}, b_{0}\right]=[0,2]$.
(b) Use the bisection method to find the interval $\left[a_{4}, b_{4}\right]$.
(c) Approximate the root of $f(x)=0$ with error not exceeding 10^{-2}.

