
MTH 351 HW #4 Grader’s solutions

Problem 1.

In this problem we will approximate the value of 3
√

10 in a manner that can be carried out by hand (only
using addition, subtraction, multiplication, and division of integers). The allowed error is ε = 10−3. You
may use a pocket calculator to do the calculations and verify your results. (Matlab is not considered a pocket
calculator.)

• Find a function f(x) that receives 3
√

10 as a root.

• Use bisection method to approximate this root of f . You will need to provide the initial interval, the
number of iterations to be performed, and the approximate value of the root.

• Use Newton’s method to approximate the root of f . You will need to provide the initial estimate x0,
the iteration formula, and the stopping condition (does Newton’s method give a strict convergence
formula for the error bound?).

Solution

One such f is
f(x) = x3 − 10

We could also choose f(x) = 10− x3, or f(x) = x3

10 − 1 as our objective functions.

Bisection Method

As 23 = 8 < 10 and 33 = 27 > 10, then f(2) < 0 and f(3) > 0 so we can chose our initial interval as
[a0, b0] = [2, 3]. We will need to perform

n ≥ log2

(
b− a
ε

)
− 1 = log2

(
1

10−3

)
− 1 =

log(103)

log(2)
− 1 ≈ 8.96578428466208 . . .

so n ≥ 9 will suffice.
We can perform n = 9 iterations (omitted here for clarity, you need to show this) and find that the

estimate should be x9 = 2.155273437500000 ≈ 3
√

10.

Newton’s method

We use the iteration scheme

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

x3n − 10

3x2n
= xn −

xn
3

+
10

3x2n
=

2xn
3

+
10

3x2n

We would like to approximate 3
√

10 to within ε. To do so, we will choose a stopping condition that is better
than the prescribed error tolerance to find where the change between iterations is very small. 2 additional
orders of magnitude is more than sufficient, so we stop iterating our method when |xi − xi−1| < 10−5. Our
starting value (initial guess) is x0 = 2. After performing 4 iterations, we see that our stopping criteria is
met at x = 2.154434690031884. The sequence of iterates is

2.000000000000000, 2.166666666666667, 2.154503616042077, 2.154434692236913, 2.154434690031884

You can check how good this approximation is with a calculator or Matlab (it’s really good).

Winter 2020

MTH 351 HW #4 Grader’s solutions

Problem 2.

Consider a sequence defined recursively as follows.

xn+1 =
15x2n + 13

4xn
− 6, x0 = 2

1. Guess the limit of this sequence. Then use the recursive formula to verify that this value is a limit of xn.

2. Find the order of convergence. If it is linear (order of convergence = 1), find the linear rate of
convergence (a positive real number) C.

Consider the sequence

xn+1 =
xn
2

+
1

xn
, x0 = 1

Repeat the above 2 tasks for this sequence.

Solution

Fist Iteration

First consider

xn+1 =
15x2n + 13

4xn
− 6, x0 = 2

The sequence does not appear to converge, so we say it diverges. To be specific, as this sequence is monotone
increasing we can more descriptively say that this sequence diverges to positive infinity.

Second Iteration

Consider

xn+1 =
xn
2

+
1

xn
, x0 = 1

We can iterate this with a pocket calculator and find 1.414213562373095 is the approximate location for
the root. This happens to be a good approximation for

√
2 (check this on your calculator with the sqrt

function). Seeing why this is true requires a bit of algebraic manipulation (factor out a 1/2xn term) before
we apply our limit operator.

xn+1 =
xn
2

+
1

xn
=

1

2xn

(
x2n + 2

)
Then we can apply the limit operator

lim
n→∞

xn+1 = lim
n→∞

1

2xn

(
x2n + 2

)
=⇒ a =

1

2a
(a2 + 2)

=⇒ 2a2 = a2 + 2 =⇒ a2 = 2 =⇒ a = ±
√

2

And so we see that there are 2 possible equilibrium values, a = ±
√

2, which includes the value we found
above with our calculator.

We next consider the convergence of the sequence above towards
√

2. Factorization does us good here,

|xn+1 −
√

2| =
∣∣∣∣xn2 +

1

xn
−
√

2

∣∣∣∣ =

∣∣∣∣∣x2n + 2− 2xn
√

2

2xn

∣∣∣∣∣ =

∣∣∣∣∣x2n − 2xn
√

2 + 2

2xn

∣∣∣∣∣ =

∣∣∣∣∣ (xn −
√

2)2

2xn

∣∣∣∣∣
As xn ≈

√
2 when n is large, we have

|xn+1 −
√

2| ≈ 1√
8
|xn −

√
2|2

And we find the convergence is quadratic (the order of convergence is 2).

Winter 2020

MTH 351 HW #4 Grader’s solutions

Problem 3.

Consider the function f(x) = x3 − 3x2 + 1. We will use Newton’s method to approximate all roots of the
function.

1. Use Matlab to plot this function on the interval [−1, 3]. How many roots does f have on this interval?
Can f have any roots outside of this interval?

2. Write the iteration formula for Newton’s method.

3. Label the 3 roots of f as r1 < r2 < r3. What is the range of values x0 that will guarantee that xn.

Solution

1 f = @(x) x.^3 - 3.*x.^2 +1;

2 x_values = linspace (-1,3,800);

3 y_values = f(x_values);

4
5 plot(x_values , y_values)

6 hold on

7 title('The function f from Problem 3')
8 ylabel('y')
9 xlabel('x')

10 hold off

11 saveas(gcf , 'HW4P3A ', 'epsc')

Which produces the following plot,

-1 -0.5 0 0.5 1 1.5 2 2.5 3

x

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

y

The function f from Problem 3

Winter 2020

MTH 351 HW #4 Grader’s solutions

This polynomial appears to have 3 roots in the interval [−1, 3]. This polynomial is of degree 3 so it has
exactly 3 (possibly complex) roots. We see 3 real roots in the interval, so there cannot be any additional
roots outside of [−1, 3].

To construct Newton’s method iteration, we first pre-compute f ′ as f ′(x) = 3x2 − 6x, then

x− f(x)

f ′(x)
= x− x3 − 3x2 + 1

3x2 − 6x

So the iteration formula is given by

xn+1 = xn −
x3n − 3x2n + 1

3x2n − 6xn

Proving that a range of values converges to a specific value is a difficult task (this is a well studied
problem in dynamical systems theory known as computing an α-set of a system for each element in an ω-set)
beyond the scope of the class. By numerical experimentation, we see that

• If x0 < 0 then xn → r1.

• If 0 < x0 < 0.1 (approximately), then xn → r3.

• If 0.1 < x0 < 1.6 (approximately), then xn → r2.

• If 1.6 < x0 < 2, then xn → r1.

• If x0 > 2, then xn → r3.

Starting near an root does not necessarily imply that the sequence will converge to that root.

Problem 4.

In this problem we will use Newton’s method to find approximate solutions of the system{
x2 + y = xy

y2 + x = y + 1

1. Write an iteration formula of the Newton’s method.

2. Write a matlab program that allows you to adjust the initial point x0 = (x0, y0)T and the number of
steps n. Then experiment with (x0, y0)T = (1,−1)T and n = 5.

3. Find an approximate solution (x, y) such that x, y < 0.

4. Use experiments to search for positive valued solution (x, y > 0). What do you observe?

Solution

We begin by manipulating the algebraic form,{
x2 + y − xy = 0

y2 + x− y − 1 = 0
=⇒

{
f(x, y) = x2 + y − xy
g(x, y) = y2 + x− y − 1

which gives us a root-finding problem. Define F ((x, y)) = (f(x, y), g(x, y))T . Let J(x) be the Jacobian
matrix, computed as

J(x, y) =

[
2x− y 1− x

1 2y − 1

]
=⇒ J−1(x, y) =

1

x(4y − 1)− 2y2 + y − 1

[
2y − 1 x− 1
−1 2x− y

]

Winter 2020

MTH 351 HW #4 Grader’s solutions

When x(4y − 1) − 2y2 + y − 1 6= 0, the Jacobian is invertible. In practice, we will check that the matrix is
invertible (or use a pseudo-inverse) and then use the built-in numerical matrix inversion subroutine (which
is really really fast on 2x2 matrices) to compute J−1.

Then [
xn+1

yn+1

]
=

[
xn
yn

]
− 1

xn(4yn − 1)− 2y2n + yn − 1

[
2yn − 1 xn − 1
−1 2xn − yn

] [
f(xn, yn)
g(xn, yn)

]
where f and g are as defined above.

A Matlab implementation is as follows: (your code must allow you to easily adjust (x0, y0) and n.
Implementing this as a function rather than a script is recommended.)

1 n = 5;

2 initial_guess = [1,-1]';
3 %prediction = objective(initial_guess);

4
5 prediction = NewtonLoop(initial_guess , n);

6 disp(prediction)

7
8 %prediction = Multi_Newton(initial_guess);

9 %disp(prediction)

10
11 function image = objective(input_value)

12
13 %For readability

14 x = input_value (1);

15 y = input_value (2);

16 image = [x^2 + y - x*y , y^2 + x - y - 1];

17 end

18
19 function new_value = Multi_Newton(input_value)

20 % Performs a single update process

21
22 %For readability

23 x = input_value (1);

24 y = input_value (2);

25
26 new_value =input_value - [[2*x - y, 1-x];[1, 2*y-1]] \ objective(

input_value) ';
27 end

28
29
30 function prediction = NewtonLoop(initial_guess , n)

31 % performs the update loop for n cycles

32 disp(size(initial_guess))

33 for ii=1:n

34 new_value = Multi_Newton(initial_guess);

35 initial_guess = new_value;

36 end

37 prediction = new_value; % Copy the value out

38 end

This produces (after 5 iterations) (x5, y5) = (0.458984212397020,−0.389390683334934).

To find a root with both values negative, we change the starting coordinate to (−1,−1). After n = 7
iterations, we converge to a root at (−1.949787524078606,−1.288794992188486), which satisfies our require-
ment.

Winter 2020

MTH 351 HW #4 Grader’s solutions

We can check many initial values, but we will eventually conclude by exhaustion that there are no strictly
positive roots of this system of nonlinear equations. Many trajectories diverge as well, rather than converging
to a root. The system possibly has no positive roots that can be found by Newton’s method.

Winter 2020

