Homework 5

Due 02/21/2020

1. Consider the function $f(x)=\frac{1}{4}\left(5-x^{2}\right)$.
(a) Solve for all fixed points of f.
(b) Write an iteration formula for the fixed point method.
(c) With $x_{0}=0.8$, use your pocket calculator to guess the limit of the sequence $\left(x_{n}\right)$. Then use the iteration formula to verify that this number is truly a limit of $\left(x_{n}\right)$.
(d) Sketch a cobweb diagram that illustrates the fixed point method with $x_{0}=0.8$. The applet found on this website https://www.geogebra.org/m/QJ79IWCL can be helpful.
(e) Find the order of convergence. If the order of convergence is 1, find the linear rate of convergence.
2. In this problem, we will approximate the largest root of the function $f(x)=x e^{x}+\cos x$.
(a) Use Matlab to sketch the graph of function f.
(b) Use Newton's method to approximate the largest root of f. You will need to answer questions such as: what should x_{0} be? What is the iteration formula? You can use an artificial criterion to stop the iteration such as: the iteration will stop at step n if $\left|x_{n}-x_{n-1}\right|<10^{-4}$.
(c) Use fixed point method to approximate the largest root of f. You will need to answer questions such as: what is a function g whose fixed points are roots of f ? What should x_{0} be? What is the iteration formula? You can use the same stopping criterion as in Part (b).
Hint: the choice of g is important. Some choices may not work. You can use the applet mentioned in Problem 1 to test your guesses.
3. Recall a general result: Let α be a root of a function f. Suppose $f^{\prime}(\alpha) \neq 0$. Then the order of the convergence of the Newton's method is 2. In this problem, we will see that if $f^{\prime}(\alpha)=0$ then the order of convergence may drop. Consider the function $f(x)=x^{2}$.
(a) Sketch a diagram that illustrates the Newton's method with $x_{0}=1$.
(b) Write the iteration formula of the Newton's method.
(c) What is the limit of the sequence $\left(x_{n}\right)$? What is the order of convergence?
4. In this problem, we want to find a polynomial curve passing through four points $(-1,1)$, $(0,-1),(1,0),(2,2)$.
(a) Find a polynomial P whose graph passes through the given points. Make sure to simplify P.
(b) Use Matlab to plot the graph of P on the interval $[-2,3]$.
(c) What is the position on the curve when $x=1.5$? What is the slope at this point? In other words, find $P(1.5)$ and $P^{\prime}(1.5)$.
