
MTH 351 HW #6 Grader’s solutions

Problem 1.

Find a polynomial of degree ≤ 3 that fits the points (2, 1), (1, 0), (3,−1), (0, 2) using the following methods.
Convert the polynomial to the standard form P (x) = ax3 + bx2 + cx + d.

• Solving a system of equations

• Lagrange’s formula.

• Newton’s formula.

Solution

a) The system
P (2) = 1,
P (1) = 0,
P (3) = −1,
P (0) = 2

can be written in matrix form as

Y x = b =⇒

1 2 4 8
1 1 1 1
1 3 9 27
1 0 0 0

d
c
b
a

 =

1
0
−1
2

 =⇒ x =

2
− 11

2
9
2
−1

Then P (x) = −x3 − 11

2 x2 + 9
2x + 2.

b) Use Lagrange’s method. We construct the basis functions from

P (x) = L1(x) + 0L2(x)− L3(x) + 2L4(x) = L1(x)− L3(x) + 2L4(x)

where

L1(x) =
(x− 1)(x− 3)(x− 0)

(2− 1)(2− 3)(2− 0)
, L3(x) =

(x− 2)(x− 1)(x− 0)

(3− 2)(3− 1)(3− 0)
, L4(x) =

(x− 2)(x− 1)(x− 3)

(−2)(−1)(−3)

Then

P (x) = − (x− 1)(x− 3)(x− 0)

2
− (x− 2)(x− 1)(x)

6
− (x− 2)(x− 1)(x− 3)

3

We can simplify this and find P (x) = −x3 + 9
2x

2 − 11
2 x + 2.

c) Use Newton’s method. We build a table recursively (this class of algorithm is known as dynamic
programming)

Let i, j denote the row and column of the array respectively, set the vector of observations in the first
column. Then proceeding left to right, ai,j =

ai,j−1−ai−1,j−1

xj−xi+j
for i = 1, . . . , 4 and j = 1, . . . i where x is the

data vector x = (2, 1, 3, 0).

1 1 -1.5 -1
0 -0.5 0.5
-1 -1
2

We can read off the first row and obtain our coefficients,

P (x) = 1 + (1)(x− 2)− 3

2
(x− 2)(x− 1)− (1)(x− 2)(x− 1)(x− 0)

We can expand and simplify to obtain P (x) = −x3 − 11
2 x2 + 9

2x + 2.

Winter 2020

MTH 351 HW #6 Grader’s solutions

Problem 2.

Let f be a function such that f(1) = 3, f(2) = 1, and f(3) = 0. Compute the divided difference coefficient
f [1, 2, 3].

Solution

The table of divided difference coefficients is:

3 -2 0.5
1 -1
0

So
f [1, 2, 3] = 0.5

Problem 3.

In this problem, you can use the Matlab program posted on the course website and on Canvas that computes
the interpolation polynomial. We want to see how well a given function can be approximated by interpolation
polynomials. Let f be a function and divide [−0.6, 0.6] Take N = 61 uniformly spaced points −0.6 = x1 <
x2 < · · · < x60 < x61 = 0.6.

1. Define f(x) = sin(x). Plot the plot of f and it’s interpolation polynomial P using the points listed
above. Does the interpolation polynomial P well approximate f?

2. Repeat part a for f(x) = (1 + x)−1.

3. The error bound for the interpolating polynomial is given by

|f(x)− P (x)| ≤ 1

n

(
b− a

n− 1

)n

max
x∈[a,b]

|f (n)(x)|

Let f(x) = (1 + x)−1 as before and [a, b] = [−0.5, 0.5]. Use Stirling’s approximation for large m,
m√

m!
m ≈ 1

e , to show that the right hand side of the above equation goes to +∞ as n→∞.

Solution

a) The plot appears to well interpolate the function. The interpolating polynomial is in blue, our data
points are scattered in x, y space with red circles.

Winter 2020

MTH 351 HW #6 Grader’s solutions

-0.6 -0.4 -0.2 0 0.2 0.4

x

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

f(
x)

Interpolating polynomial

To see how good the interpolation is, we can check the error.

-0.6 -0.4 -0.2 0 0.2 0.4

x

-2.5

-2

-1.5

-1

-0.5

0

er
ro

r
(P

 -
 f)

10 -9 Error of the Interpolating Polynomial

The overall error is quite good, consistent with our plot of the interpolating polynomial. Our matlab code
is:

f = @(x) sin(x);

x = linspace (-0.6, 0.6, 61);

poly = newton_builder(x,f);

f1 = figure ();

fplot(poly , [x(1), x(end)])% x(1) <0

Winter 2020

MTH 351 HW #6 Grader’s solutions

grid on

hold on

scatter(x, f(x))

title('Interpolating polynomial ')
xlabel 'x'
ylabel 'f(x)'
hold off

polynomial = matlabFunction(poly);

error_P = @(x) polynomial(x) - f(x);

f2 = figure ();

fplot(error_P , [x(1), x(end)]) % x(1) <0

hold on

title('Error of the Interpolating Polynomial ')
xlabel 'x'
ylabel 'error (P - f)'
hold off

function lastval = last_divdif(Xpts , f)

coef_array = divdif(Xpts , f(Xpts));

lastval = coef_array (1,1:end);

end

function coef_array = divdif(Xpts ,Ypts)

% Xpts and Ypts are data vectors of the same length

% Xpts = [x1 , x2, x3, ... xN]

% Ypts = [y1 , y2, y3, ... yN]

% coef_array is a table of intermediate divided difference

coefficients

datalength = length(Xpts);

coef_array = zeros(datalength);

coef_array (:,1) = Ypts '; % Write the data values to the first column

for col = 2: datalength

for row = 1 : (datalength - col + 1)

%and now our magic step

coef_array(row , col) = (coef_array(row+1, col -1) - coef_array(

row , col - 1))/(Xpts(row + col -1) - Xpts(row));

end

end

end

function polynomial = newton_builder(xpts , f)

data_length = length(xpts);

% Find div -dif coefficients

coef = last_divdif(xpts , f);

% Find the basis polynomials

basis = ones(1,data_length , 'sym'); % To store our basis polynomials

syms t % Our symbolic variable

for basis_index = 2: length(basis) % Loop over each basis

for x_index = 1: basis_index -1 % Loop over the first basis_index

Winter 2020

MTH 351 HW #6 Grader’s solutions

data points we want

basis(basis_index) = basis(basis_index) * (t - xpts(x_index));

end

end

% Construct the interpolating polynomial

P = basis*coef ';
polynomial = simplify(P);

end

b) We can reuse our algorithms developed above by changing our inline function f . The plot appears to
well interpolate the function. The interpolating polynomial is in blue, our data points are scattered in x, y
space with red circles.

-0.6 -0.4 -0.2 0 0.2 0.4

x

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

f(
x)

Interpolating polynomial

To see how good the interpolation is, we can check the error.

Winter 2020

MTH 351 HW #6 Grader’s solutions

-0.6 -0.4 -0.2 0 0.2 0.4

x

0

5

10

15

er
ro

r
(P

 -
 f)

10 -8 Error of the Interpolating Polynomial

The overall error is quite good, consistent with our plot of the interpolating polynomial.
With 61 interpolating points, we have sufficient data to well interpolate the function.

c) Let f(x) = (x + 1)−1 as before. Then with a bit of calculus,

f (n)(x) =
(−1)nn!

(1 + x)n+1

The maximum is attained when 1 + x is minimized (as it is in the denominator), we can write

max
x∈[a,b]

|f(x)| ≤ n!

(1 + (−0.6))n+1
=

n!

0.4n+1

Then

|f(x)− P (x)| ≤ 1

n

(
0.6− (−0.6)

n− 1

)n
n!

0.4n
=

1

n

(
3

n− 1

)n

n! =

(
3

n− 1

)n

(n− 1)!

=
3

n− 1

(
3

n− 1

)n−1

(n− 1)! =
3

n− 1

(
3

n−1
√

(n− 1)!

n− 1

)n−1

.
3

n− 1

(
3

e

)n−1

which goes to infinity as n→∞.

Problem 4.

Write a function in Matlab that does the following:

• Input: a function f and array of observations x = (x1, x2, . . . , xn),

• Output: the divided difference f [x1, x2, . . . , xn].

Winter 2020

MTH 351 HW #6 Grader’s solutions

Solution

Note you can pass in a function (either an anonymous function or a local function defined in your script .m
file) as an argument to your function. You can use additional helper function (local functions, in Matlab
terminology)

function lastval = last_divdif(Xpts , f)

% A function that computes the divided difference f[Xpts]

coef_array = divdif(Xpts , f(Xpts));

disp(coef_array)

lastval = coef_array (1,end);

end

function coef_array = divdif(Xpts ,Ypts)

% Xpts and Ypts are data vectors of the same length

% Xpts = [x1 , x2 , x3 , ... xN]

% Ypts = [y1 , y2 , y3 , ... yN]

% coef_array is a table of intermediate divided difference

coefficients

datalength = length(Xpts);

coef_array = zeros(datalength);

coef_array (:,1) = Ypts '; % Write the data values to the first

column

for col = 2: datalength

for row = 1 : (datalength - col + 1)

%and now our magic step

coef_array(row , col) = (coef_array(row+1, col -1) -

coef_array(row , col - 1))/(Xpts(row + col -1)

- Xpts(row));

end

end

end

Winter 2020

