Homework 6

Due 02/28/2020

1. Find a polynomial of degree ≤ 3 that fits the points $(2,1),(1,0),(3,-1),(0,2)$ using the following methods. Convert the polynomial into the standard form $P(x)=a x^{3}+b x^{2}+c x+d$. (If you don't want to simplify the polynomial by hand, you can use the command simplify of Matlab.)
(a) Solving a system of equations.

Hint: after writing the system in matrix form $A x=b$, you can use Matlab to solve this equation by using the command $x=\operatorname{inv}(A) * b$.
(b) Lagrange's formula.
(c) Newton's formula.
2. Let f be a function such that $f(1)=3, f(2)=1, f(3)=0$. Compute the divided difference $f[1,2,3]$.
3. In this problem, you can use the Matlab program posted on course website and Canvas (also given in the lecture) that computes the interpolation polynomial. We want to see how well a given function can be approximated by the interpolation polynomials. Let f be a function. We divide the the interval $[-0.6,0.6]$ into subintervals of the same length $h=0.02$. The gridpoints are $-0.6=x_{1}<x_{2}<\ldots<x_{61}=0.6$. Take $N=61$ points $\left(x_{1}, y_{1}\right), \ldots\left(x_{N}, y_{N}\right)$ on the graph of f.
(a) For $f(x)=\sin x$, plot the graph of the interpolation P on the interval $[-0.6,0.6]$. Plot f and all of P on the same graph (for example, by using the command hold on). Does the interpolation polynomial approximate well the function f on the interval $[-0.6,0.6]$?
(b) The same questions as in Part (a) but for $f(x)=\frac{1}{1+x}$.
(c) We know that the error between f and P is estimated by

$$
\begin{equation*}
|f(x)-P(x)| \leq \frac{1}{n}\left(\frac{b-a}{n-1}\right)^{n} \max _{[a, b]}\left|f^{(n)}\right| \tag{*}
\end{equation*}
$$

Let $f(x)=\frac{1}{1+x}$ and $[a, b]=[-0.6,0.6]$. Use Stirling approximation $\frac{\sqrt[m]{m!}}{m} \approx \frac{1}{e}$ (for large m) to show that the right hand side of $(*)$ goes to infinity as $n \rightarrow \infty$.
4. You are recommended to do Matlab Practice 3 (posted on course website and Canvas) before starting this problem.
Write a function in Matlab that does the following:

- Input:
- a function f,
- an array x, i.e. a vector $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
- Output: the divided difference $f\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.

Test your function with $f(t)=\frac{1}{1+t^{2}}$ and $x=(1,2,3,4)$.

