
MTH 351 HW #7 Grader’s solutions

Problem 1.

Let f(x) = (1+x)−1. For evenly spaced sample points 0 = x1 < x2 < · · · < xn = 2, let Pn be the polynomial
that interpolates (xn). Find n such that

|f(x)− Pn(x)| ≤ 10−4 ∀x ∈ [0, 2]

Solution

We can bound the error by using the fact that the interpolating points (xn) are uniformly spaced.

|f(x)− Pn(x)| ≤ 1

n

(
2

n− 1

)n

max
x∈[a,b]

|f (n)(x)|

As |f (n)(x)| = n!(1 + x)−n−1, the maximum occurs at x = 0 (as f is continuous on a closed and bounded
interval, f attains it’s maximum), then

|f(x)− Pn(x)| ≤ 1

n

(
2n

n− 1

)n
n!

(1 + 0)n+1
=

(
2

n− 1

)n

(n− 1)! < 10−4

With a calculator, we can solve for n and find that n ≥ 31 is sufficient to satisfy the error bound.

Problem 2.

2. Given a function f on some interval, say [−1, 1], and an integer n > 1, we are interested in the question:
what set of sample points {x1, x2, ..., xn} on [−1, 1] should we choose so that the corresponding interpolation
polynomial Pn can best approximate function f? Note that the number of sample points n is fixed. We are
testing different choices of sample points.

To investigate this question, let us consider an example f(x) = 1
1+10x2 and let n = 11, partitioning [−1, 1]

into 10 partitions). Consider two ways of sampling:

• Evenly spaced −1 = x1 < x2 < . . . < xn = 1

• Unevenly spaced, zk = cos
(
2k−1
2n π

)
, for k = 1, 2, . . . , n.

a) Use the Plot command to sketch each set of sample points on the interval [−1, 1].

b) Let Pn be the polynomial that interpolates the set of data points (x1, f(x1)), (x2, f(x2)), . . . , (xn, f(xn)).
Plot Pn and f on the same graph.

c) Let Qn be the polynomial that interpolates the set of data points (z1, f(z1)), (z2, f(z2)), . . . , (zn, f(zn)).
Plot Qn and f on the same graph.

d) Based on the graphs, is one way of sampling significantly better than the other? Give a rough explanation
for your observation?

e) Repeat parts a− d for the objective function f(x) = cos(x).

Winter 2020

MTH 351 HW #7 Grader’s solutions

Solution

a) Some Matlab code:

n = 11;

xpts = linspace(-1,1,n);

zpts = 1:1:n;

zpts = cos ((2.*zpts -1) ./(2*n)*pi);

yxpts = objective(xpts);

yzpts = objective(zpts);

scatter(xpts , yxpts , 'filled ', 'r')
grid on

hold on

scatter(zpts , yzpts , 'filled ', 'g')
legend('Uniform ','Cosine ')
hold off

function out = objective(in)

out = 1./(1+10.*(in).^2);

end

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Uniform
Cosine

b) Some Matlab code:

Winter 2020

MTH 351 HW #7 Grader’s solutions

% Read in our data

n = 11;

xpts = linspace(-1,1,n);

tpts = linspace (-1,1,500);

yxpts = objective(xpts);

ytpts = objective(tpts);

syms interP

interP = make_interpolating_polynomial(xpts , yxpts);

fplot(interP , [-1,1])

grid on

hold on

plot(tpts , ytpts)

scatter(xpts , yxpts , 'filled ', 'r')
title('Interpolating polynomial ')
hold off

% This function is recovered from HW6#5. Lagrange 's method is also

% acceptable for this problem , using the starter code on the course

website

function poly = make_interpolating_polynomial(xpts , ypts)

data_length = length(xpts);

% Find div -dif coefficients

coef_array = divdif(xpts , ypts);

coef = coef_array (1,:);

% Find the basis polynomials

basis = ones(1,data_length , 'sym'); % To store our basis polynomials

syms t % Our symbolic variable

for basis_index = 2: length(basis) % Loop over each basis

for x_index = 1: basis_index -1 % Loop over the first basis_index

data points we want

basis(basis_index) = basis(basis_index) * (t - xpts(x_index));

end

end

% Construct the interpolating polynomial

P = basis*coef ';
poly = simplify(P);

end

%We built a recusive helper function that will make short work of the

Newton 's
%Divided Differences coefficients.

function coef_array = divdif(Xpts ,Ypts)

% Xpts and Ypts are data vectors of the same length

% Xpts = [x1 , x2, x3, ... xN]

% Ypts = [y1 , y2, y3, ... yN]

datalength = length(Xpts);

coef_array = zeros(datalength);

coef_array (:,1) = Ypts '; % Write the data values to the first column

for col = 2: datalength

for row = 1 : (datalength - col + 1)

Winter 2020

MTH 351 HW #7 Grader’s solutions

%and now our magic step

coef_array(row , col) = (coef_array(row+1, col -1) - coef_array(

row , col - 1))/(Xpts(row + col -1) - Xpts(row));

end

end

end

function out = objective(in)

out = 1./(1+10.*(in).^2);

end

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Interpolating polynomial

c) Some Matlab code:

% Read in our data

n = 11;

zpts = 1:1:n;

zpts = cos ((2.*zpts -1) ./(2*n)*pi);

tpts = linspace (-1,1,500);

ytpts = objective(tpts);

yzpts = objective(zpts);

syms interQ

Winter 2020

MTH 351 HW #7 Grader’s solutions

interQ = make_interpolating_polynomial(zpts , yzpts);

fplot(interQ , [-1,1])

grid on

hold on

plot(tpts , ytpts)

scatter(zpts , yzpts , 'filled ', 'g')

title('Interpolating polynomial ')
hold off

% This function is recovered from HW6#5. Lagrange 's method is also

% acceptable for this problem , using the starter code on the course

website

function poly = make_interpolating_polynomial(xpts , ypts)

data_length = length(xpts);

% Find div -dif coefficients

coef_array = divdif(xpts , ypts);

coef = coef_array (1,:);

% Find the basis polynomials

basis = ones(1,data_length , 'sym'); % To store our basis polynomials

syms t % Our symbolic variable

for basis_index = 2: length(basis) % Loop over each basis

for x_index = 1: basis_index -1 % Loop over the first basis_index

data points we want

basis(basis_index) = basis(basis_index) * (t - xpts(x_index));

end

end

% Construct the interpolating polynomial

P = basis*coef ';
poly = simplify(P);

end

%We built a recusive helper function that will make short work of the

Newton 's
%Divided Differences coefficients.

function coef_array = divdif(Xpts ,Ypts)

% Xpts and Ypts are data vectors of the same length

% Xpts = [x1 , x2, x3, ... xN]

% Ypts = [y1 , y2, y3, ... yN]

datalength = length(Xpts);

coef_array = zeros(datalength);

coef_array (:,1) = Ypts '; % Write the data values to the first column

for col = 2: datalength

for row = 1 : (datalength - col + 1)

%and now our magic step

coef_array(row , col) = (coef_array(row+1, col -1) - coef_array(

row , col - 1))/(Xpts(row + col -1) - Xpts(row));

end

end

end

Winter 2020

MTH 351 HW #7 Grader’s solutions

function out = objective(in)

out = 1./(1+10.*(in).^2);

end

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Interpolating polynomial

d) The points zk produces a significantly better interpolation polynomial than the evenly spaced xk. Pn

gives a slightly better approximation f than Qn near the center of the interval, but the error near the ends
of the interval of Pn is worse than Qn. Decreasing the distance between points on the endpoints helps resist
the Runge effect as the maximum error

e) We change the objective function to f(x) = cos(x). The code is repeated for completeness.

Repeat of part a) Some Matlab code:

n = 11;

xpts = linspace(-1,1,n);

zpts = 1:1:n;

zpts = cos ((2.*zpts -1) ./(2*n)*pi);

yxpts = objective(xpts);

yzpts = objective(zpts);

scatter(xpts , yxpts , 'filled ', 'r')

Winter 2020

MTH 351 HW #7 Grader’s solutions

grid on

hold on

scatter(zpts , yzpts , 'filled ', 'g')
legend('Uniform ','Cosine ')
hold off

function out = objective(in)

out = cos(in);

end

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Uniform
Cosine

Repeat of part b) Some Matlab code:

% Read in our data

n = 11;

xpts = linspace(-1,1,n);

tpts = linspace (-1,1,500);

yxpts = objective(xpts);

ytpts = objective(tpts);

syms interP

interP = make_interpolating_polynomial(xpts , yxpts);

fplot(interP , [-1,1])

grid on

hold on

Winter 2020

MTH 351 HW #7 Grader’s solutions

plot(tpts , ytpts)

scatter(xpts , yxpts , 'filled ', 'r')
title('Interpolating polynomial ')
hold off

% This function is recovered from HW6#5. Lagrange 's method is also

% acceptable for this problem , using the starter code on the course

website

function poly = make_interpolating_polynomial(xpts , ypts)

data_length = length(xpts);

% Find div -dif coefficients

coef_array = divdif(xpts , ypts);

coef = coef_array (1,:);

% Find the basis polynomials

basis = ones(1,data_length , 'sym'); % To store our basis polynomials

syms t % Our symbolic variable

for basis_index = 2: length(basis) % Loop over each basis

for x_index = 1: basis_index -1 % Loop over the first basis_index

data points we want

basis(basis_index) = basis(basis_index) * (t - xpts(x_index));

end

end

% Construct the interpolating polynomial

P = basis*coef ';
poly = simplify(P);

end

%We built a recusive helper function that will make short work of the

Newton 's
%Divided Differences coefficients.

function coef_array = divdif(Xpts ,Ypts)

% Xpts and Ypts are data vectors of the same length

% Xpts = [x1 , x2, x3, ... xN]

% Ypts = [y1 , y2, y3, ... yN]

datalength = length(Xpts);

coef_array = zeros(datalength);

coef_array (:,1) = Ypts '; % Write the data values to the first column

for col = 2: datalength

for row = 1 : (datalength - col + 1)

%and now our magic step

coef_array(row , col) = (coef_array(row+1, col -1) - coef_array(

row , col - 1))/(Xpts(row + col -1) - Xpts(row));

end

end

end

function out = objective(in)

out = cos(in);

end

Winter 2020

MTH 351 HW #7 Grader’s solutions

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Interpolating polynomial

Repeat of part c) Some Matlab code:

% Read in our data

n = 11;

zpts = 1:1:n;

zpts = cos ((2.*zpts -1) ./(2*n)*pi);

tpts = linspace (-1,1,500);

ytpts = objective(tpts);

yzpts = objective(zpts);

syms interQ

interQ = make_interpolating_polynomial(zpts , yzpts);

fplot(interQ , [-1,1])

grid on

hold on

plot(tpts , ytpts)

scatter(zpts , yzpts , 'filled ', 'g')

title('Interpolating polynomial ')
hold off

% This function is recovered from HW6#5. Lagrange 's method is also

% acceptable for this problem , using the starter code on the course

Winter 2020

MTH 351 HW #7 Grader’s solutions

website

function poly = make_interpolating_polynomial(xpts , ypts)

data_length = length(xpts);

% Find div -dif coefficients

coef_array = divdif(xpts , ypts);

coef = coef_array (1,:);

% Find the basis polynomials

basis = ones(1,data_length , 'sym'); % To store our basis polynomials

syms t % Our symbolic variable

for basis_index = 2: length(basis) % Loop over each basis

for x_index = 1: basis_index -1 % Loop over the first basis_index

data points we want

basis(basis_index) = basis(basis_index) * (t - xpts(x_index));

end

end

% Construct the interpolating polynomial

P = basis*coef ';
poly = simplify(P);

end

%We built a recusive helper function that will make short work of the

Newton 's
%Divided Differences coefficients.

function coef_array = divdif(Xpts ,Ypts)

% Xpts and Ypts are data vectors of the same length

% Xpts = [x1 , x2, x3, ... xN]

% Ypts = [y1 , y2, y3, ... yN]

datalength = length(Xpts);

coef_array = zeros(datalength);

coef_array (:,1) = Ypts '; % Write the data values to the first column

for col = 2: datalength

for row = 1 : (datalength - col + 1)

%and now our magic step

coef_array(row , col) = (coef_array(row+1, col -1) - coef_array(

row , col - 1))/(Xpts(row + col -1) - Xpts(row));

end

end

end

function out = objective(in)

out = cos(in);

end

Winter 2020

MTH 351 HW #7 Grader’s solutions

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Interpolating polynomial

Repeat of part d) Neither polynomial is particularly better or worse than the other.

Problem 3.

We now test how well quadratic spline interpolation can approximate a function. Consider f(x) = 1
1+10x2

on the interval [−1, 1]. Choose n = 11 evenly spaced sample points −1 = x1 < x2 < . . . < xn = 1. Set
yj = f(xj). On each subinterval, [xj , xj+1], the function f is approximated by a quadratic polynomial
sj(x) such that the slope of the approximation curve varies smoothly across each sample point. Denote
Mj = s′j(xj) and Mj+1 = s′j(xj+1).

a) For j = 1, . . . , n− 1, use the fact that sj(xj) = yj to write the formula for sj(x) in terms of yj , Mj , and
Mj+1.

b) For j = 1, . . . , n− 1, write an expression that Mj and Mj+1 has to satisfy such that sj(xj+1) = yj+1.

c) In part (b), we know that each j = 1, . . . , n− 1, yields an equation which M1,M2, . . . ,Mn. Thus there
are n− 1 equations to solve for n unknowns M1,M2, . . . ,Mn.

d) Use Matlab to draw the spline interpolation curve (defined as the concatenation of the quadratic curves
s1, s2, . . . , sn). Plot f and the interpolation Pn from problem 2 on the same plot. Which is the better
approximation of f (spline or polynomial)?

Winter 2020

MTH 351 HW #7 Grader’s solutions

Solution

a) From the notes, we can set

sj(x) =
Mj −Mj+1

2(xj − xj+1)
(x2 − x2j) +

xjMj+1 − xj+1Mj

xj − xj+1
(x− xj) + yj

where xj = 2j
n − 1, simplified for brevity.

b) Computing the values Mj is done iteratively, so we may assume that if j > 0, we can assume Mj is
known (as M0 is fixed or assumed to be a known value). Then

Mj+1 =
2(yj+1 − yj)
xj+1 − xj

−Mj

c) Set M0 = 0 as indicated. We can use the recursive algorithm described above, pre-computing xj and
f(x)j.

n = 11; % n sample points

x = linspace(-1,1,n);

f = @(x) (1 + 10.*x.^2) .^(-1);

y = f(x);

M = zeros(1,n);

% We don 't need to define M(0) as 0 again

for ii=2:n % Generate the coefficients M_j

M(ii) = 2 .* (y(ii) - y(ii -1))./(x(ii) - x(ii -1)) - M(ii -1);

end

disp(M)

This produces the sequence of values of Mj as

0 0.44226 0.3803 1.2919 2.0048 0.85238 − 3.7095 0.41282 − 2.0851 1.2625 − 1.7048

d) We start with the prior algorithm for computing values of M , then build the splines

%A script to compute and plot quadratic spline approximations for a

function.

% Precompute a few terms

n = 11; % n sample points

x = linspace(-1,1,n);

f = @(x) (1 + 10.*x.^2) .^(-1);

y = f(x);

M = zeros(1,n);

% We don 't need to define M(0) as 0 again

for ii=2:n

% Generate the coefficients

M(ii) = (2 .* (y(ii) - y(ii -1)))./(x(ii) - x(ii -1)) - M(ii -1);

end

for ii = 1:n-1 % build each spline locally

% setup local variables

x_local = x(ii):0.01:x(ii+1);

Winter 2020

MTH 351 HW #7 Grader’s solutions

% Build the polynomial

a_local = (M(ii) - M(ii+1)) ./ (2.*(x(ii) - x(ii+1)));

b_local = ((x(ii) .* M(ii+1)) - (x(ii+1) .* M(ii)))./(x(ii) - x(ii+1)

);

y_local = a_local .* (x_local .^2 - x(ii)^2) + b_local .* (x_local -x(

ii))...

+ y(ii);

% Now for the plot

plot(x_local , y_local)

hold on

end

scatter(x, y, 'g') % Add the interpolating points as a sanity check

hold off

saveas(gcf , 'MTH351_HW7_fig1 ', 'epsc') % Save the figure to an eps file

This produces the image

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

To overlay the plots, specify hold off and then run your script or call your function that generates the
interpolating polynomial. When we overlay the polynomial interpolation, we obtain

Winter 2020

MTH 351 HW #7 Grader’s solutions

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2
Interpolating polynomial

The blue line is f , the green line is the interpolating polynomial, and the patchwork of differently colored
lines is the quadratic spline. It appears that the spline is overall a better approximation, as the maximum
error of the spline is less than the maximum error of the interpolating polynomial. However, if we are
primarily interested in the behavior near 0, the interpolating polynomial is a better approximation, as it
better preserves the curvature of the function f . You can see this specifically by examining the slopes of f ,
P , and s at 0 (the slope of f and P is 0, while s′ is not 0 as 0 does not maximize s).

Winter 2020

