Homework 7

Due 03/06/2020

1. Let $f(x) = \frac{1}{x+1}$. For evenly spaced sample points $0 = x_1 < x_2 < \ldots < x_n = 2$, let P_n be the corresponding interpolation polynomial. Find n such that

$$|f(x) - P_n(x)| \le 10^{-4} \quad \forall x \in [0, 2].$$

2. Given a function f on some interval, say [-1, 1], and an integer n > 1, we are interested in the question: what set of sample points $\{x_1, x_2, \ldots, x_n\}$ on [-1, 1] should we choose so that the corresponding interpolation polynomial P_n can best approximate function f? Note that the number of sample points n is fixed. We are testing different choices of sample points.

To investigate this question, let us consider an example $f(x) = \frac{1}{1+10x^2}$ and n = 11 (i.e. the interval [-1, 1] is partitioned into 10 segments). Consider two different ways of sampling:

- Evenly spaced $-1 = x_1 < x_2 < \ldots < x_n = 1$,
- Unevenly spaced $z_k = \cos\left(\frac{2k-1}{2n}\pi\right)$ for $k = 1, 2, \dots, n$.
- (a) Use the command **Plot** to sketch each set of sample points on the interval [-1, 1].
- (b) Let P_n be the interpolation polynomial corresponding to the set of data points $(x_1, f(x_1))$, $\dots, (x_n, f(x_n))$. Plot P_n and f on the same graph.
- (c) Let Q_n be the interpolation polynomial corresponding to the set of data points $(z_1, f(z_1))$, $\dots, (z_n, f(z_n))$. Plot Q_n and f on the same graph.
- (d) Based on the graphs, is one way of sampling significantly better than the other? Give a rough explanation for your observation.
- (e) The same questions in Parts (b), (c), (d) but for $f(x) = \cos x$.
- 3. We now test how well quadratic spline interpolation can approximate a function. Consider $f(x) = \frac{1}{1+10x^2}$ on the interval [-1,1]. Choose n = 11 evenly spaced sample points $-1 = x_1 < x_2 < \ldots < x_n = 1$. Put $y_j = f(x_j)$. On each subinterval $[x_j, x_{j+1}]$, the function f is approximated by a quadratic polynomial $s_j(x)$ such that the slope of the approximation curve varies smoothly across each sample point. Denote $M_j = s'_i(x_j)$ and $M_{j+1} = s'_i(x_{j+1})$.
 - (a) For j = 1, ..., n-1, use the fact that $s_j(x_j) = y_j$ to write the formula for $s_j(x)$ in terms of y_j , M_j and M_{j+1} .
 - (b) For j = 1, ..., n 1, write an equation that M_j and M_{j+1} has to satisfy such that $s_j(x_{j+1}) = y_{j+1}$.
 - (c) In Part (b), we know that each j = 1, 2, ..., n-1 yields an equation which $M_1, M_2, ..., M_n$ has to satisfy. Thus, there are n-1 equations to solve for n unknowns $M_1, M_2, ..., M_n$. Let us choose $M_1 = 0$ to balance the number of unknowns and the number of equations. Use Matlab is solve for $M_2, M_3, ..., M_n$.
 - (d) Use Matlab to draw the spline interpolation curve (i.e. the concatenation of the quadratic curves $s_1, s_2, \ldots, s_{n-1}$). Plot f and the interpolation P_n (from Part (b) of Problem 1) on the same plot. Which is the better approximation of f (the spline curve or the polynomial curve)?