Homework 7

Due 03/06/2020

1. Let $f(x)=\frac{1}{x+1}$. For evenly spaced sample points $0=x_{1}<x_{2}<\ldots<x_{n}=2$, let P_{n} be the corresponding interpolation polynomial. Find n such that

$$
\left|f(x)-P_{n}(x)\right| \leq 10^{-4} \quad \forall x \in[0,2] .
$$

2. Given a function f on some interval, say $[-1,1]$, and an integer $n>1$, we are interested in the question: what set of sample points $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ on $[-1,1]$ should we choose so that the corresponding interpolation polynomial P_{n} can best approximate function f ? Note that the number of sample points n is fixed. We are testing different choices of sample points.

To investigate this question, let us consider an example $f(x)=\frac{1}{1+10 x^{2}}$ and $n=11$ (i.e. the interval $[-1,1]$ is partitioned into 10 segments). Consider two different ways of sampling:

- Evenly spaced $-1=x_{1}<x_{2}<\ldots<x_{n}=1$,
- Unevenly spaced $z_{k}=\cos \left(\frac{2 k-1}{2 n} \pi\right)$ for $k=1,2, \ldots, n$.
(a) Use the command Plot to sketch each set of sample points on the interval $[-1,1]$.
(b) Let P_{n} be the interpolation polynomial corresponding to the set of data points $\left(x_{1}, f\left(x_{1}\right)\right)$, $\ldots,\left(x_{n}, f\left(x_{n}\right)\right)$. Plot P_{n} and f on the same graph.
(c) Let Q_{n} be the interpolation polynomial corresponding to the set of data points $\left(z_{1}, f\left(z_{1}\right)\right)$, $\ldots,\left(z_{n}, f\left(z_{n}\right)\right)$. Plot Q_{n} and f on the same graph.
(d) Based on the graphs, is one way of sampling significantly better than the other? Give a rough explanation for your observation.
(e) The same questions in Parts (b), (c), (d) but for $f(x)=\cos x$.

3. We now test how well quadratic spline interpolation can approximate a function. Consider $f(x)=\frac{1}{1+10 x^{2}}$ on the interval $[-1,1]$. Choose $n=11$ evenly spaced sample points $-1=$ $x_{1}<x_{2}<\ldots<x_{n}=1$. Put $y_{j}=f\left(x_{j}\right)$. On each subinterval $\left[x_{j}, x_{j+1}\right]$, the function f is approximated by a quadratic polynomial $s_{j}(x)$ such that the slope of the approximation curve varies smoothly across each sample point. Denote $M_{j}=s_{j}^{\prime}\left(x_{j}\right)$ and $M_{j+1}=s_{j}^{\prime}\left(x_{j+1}\right)$.
(a) For $j=1, \ldots, n-1$, use the fact that $s_{j}\left(x_{j}\right)=y_{j}$ to write the formula for $s_{j}(x)$ in terms of y_{j}, M_{j} and M_{j+1}.
(b) For $j=1, \ldots, n-1$, write an equation that M_{j} and M_{j+1} has to satisfy such that $s_{j}\left(x_{j+1}\right)=y_{j+1}$.
(c) In Part (b), we know that each $j=1,2, \ldots, n-1$ yields an equation which $M_{1}, M_{2}, \ldots, M_{n}$ has to satisfy. Thus, there are $n-1$ equations to solve for n unknowns $M_{1}, M_{2}, \ldots, M_{n}$. Let us choose $M_{1}=0$ to balance the number of unknowns and the number of equations. Use Matlab is solve for $M_{2}, M_{3}, \ldots M_{n}$.
(d) Use Matlab to draw the spline interpolation curve (i.e. the concatenation of the quadratic curves $s_{1}, s_{2}, \ldots, s_{n-1}$). Plot f and the interpolation P_{n} (from Part (b) of Problem 1) on the same plot. Which is the better approximation of f (the spline curve or the polynomial curve)?
