Denote $I=\int_{0}^{1} \frac{1}{1+4 x^{2}} \mathrm{~d} x$.

Problem 1.

Find the exact value of I.

Solution

$$
\int_{0}^{2} \frac{1}{1+4 x^{2}} \mathrm{~d} x=\left.\frac{1}{2} \arctan (2 x)\right|_{0} ^{1}=\frac{1}{2}(\arctan (2)-\arctan (0))=\frac{\arctan (2)}{2}
$$

With a calculator, $I \approx 0.231823804500403$.

Problem 2.

For a generic positive integer n we take $n+1$ equally spaced sample points indexed by $x_{0}, x_{1}, \ldots, x_{n}$ on the interval $[0,1]$. Denote by $L_{n}, R_{n}, M_{n}, T_{n}$ the Riemann sums corresponding to the left-point, right-point, midpoint, and trapezoid rule. Use sigma notation to write a formula for each $L_{n}, R_{n}, M_{n}, T_{n}$.

Solution

Set $x_{i}=\frac{i}{n}$.

$$
\begin{gathered}
L_{n}=\sum_{i=0}^{n-1} \frac{1}{n} f\left(x_{i}\right)=\sum_{i=0}^{n-1} \frac{1}{n} \frac{1}{1+4 x_{i}^{2}}=\sum_{i=0}^{n-1} \frac{1}{n} \frac{1}{1+\left(\frac{2 i}{n}\right)^{2}}=\sum_{i=0}^{n-1} \frac{n}{n^{2}+4 i^{2}} \\
R_{n}=\sum_{i=1}^{n} \frac{1}{n} f\left(x_{i}\right)=\sum_{i=1}^{n} \frac{n}{n^{2}+4 i^{2}}
\end{gathered}
$$

Note that the indexing has changed between L_{n} and R_{n}.

$$
\begin{gathered}
\frac{x_{i}+x_{i+1}}{2}=\frac{1}{2} \frac{i}{n}+\frac{1}{2} \frac{i+1}{n}=\frac{2 i+1}{2 n} \Longrightarrow 4\left(\frac{2 i+1}{2 n}\right)^{2}=\left(\frac{2 i+1}{n}\right)^{2} \\
M_{n}=\sum_{i=0}^{n-1} \frac{1}{n} f\left(\frac{x_{i}+x_{i+1}}{2}\right)=\sum_{i=0}^{n-1} \frac{1}{n} \frac{1}{1+\left(\frac{2 i+1}{n}\right)^{2}}=\sum_{i=0}^{n-1} \frac{1}{n+\frac{1}{n}(2 i+1)^{2}}=\sum_{i=0}^{n-1} \frac{n}{n^{2}+(2 i+1)^{2}} \\
T_{n}=\sum_{i=0}^{n-1} \frac{1}{n} \frac{f\left(x_{i}\right)+f\left(x_{i+1}\right)}{2}=\sum_{i=0}^{n-1} \frac{1}{2 n}\left(\frac{1}{1+\left(\frac{2 i}{n}\right)^{2}}+\frac{1}{1+\left(\frac{2 i+2}{n}\right)^{2}}\right)
\end{gathered}
$$

Problem 3.

Which of these three methods gives the best approximation of I when $n=4$?

Solution

We can use the above formulas to compute the approximations, then find the error bounds.

$$
\begin{aligned}
& \left|L_{4}-I\right| \approx 0.098348718026032 \\
& \left|R_{4}-I\right| \approx 0.101651281973968 \\
& \left|M_{4}-I\right| \approx 0.101651281973968 \\
& \left|T_{4}-I\right| \approx 0.001651281973968
\end{aligned}
$$

T_{4} gives the best approximation of the four choices. The left, right, and midpoint approximations are of similar quality.

Problem 4.

Write Matlab code to compute L_{n}, R_{n}, M_{n}, and T_{n} for $n=8,16,32,64$.

Solution

We do this in Matlab. For simplicity, we write one script for each method which allows us to easily change n (line 3). Both the approximation and error are printed to the console.
Left point method:

```
a = 0;
b = 1;
n = 4;
xvals = linspace(a,b,n+1); % Generate n+1 points
yvals = objective(xvals);
total = 0;
for ii = 1:n
    total = total + (yvals(ii))*(b-a)/n;
end
disp(total)
I = atan(2)/2;
error = total - I;
disp( abs(error) )
function out = objective(in)
    out = 1./(1 + 4.*in.^2);
end
```

Right point method:

```
a = 0;
b = 1;
n = 4;
xvals = linspace(a,b,n+1); % Generate n+1 points
yvals = objective(xvals);
total = 0;
for ii = 1:n
    total = total + (yvals(ii+1))*(b-a)/n;
end
disp(total)
I = atan(2)/2;
error = total - I;
disp( abs(error) )
function out = objective(in)
    out = 1./(1 + 4.*in.^2);
end
```

Trapezoidal method:

```
a = 0;
b = 1;
n = 4;
xvals = linspace(a,b,n+1); % Generate n+1 points
yvals = objective(xvals);
total = 0;
for ii = 1:n
    total = total + (yvals(ii) + yvals(ii+1))/2*(b-a)/n;
```

```
end
disp(total)
I = atan(2)/2;
error = total - I;
disp( abs(error) )
function out = objective(in)
    out = 1./(1 + 4.*in.^2);
end
```

Midpoint method:

```
a = 0;
b = 1;
n = 4;
xvals = linspace(a,b,n+1); % Generate n+1 points
xvals = xvals + 1/n; % Shift xvalues by one half
yvals = objective(xvals);
total = 0;
for ii = 1:n
    total = total + (yvals(ii))*(b-a)/n;
end
disp(total)
I = atan(2)/2;
error = total - I;
disp( abs(error) )
function out = objective(in)
    out = 1./(1 + 4.*in.^2);
end
```


Problem 5.

Find values of n such that the error for each left point, right point, midpoint, and trapezoidal rule approximations are bounded by $\epsilon=0.0001$.

Solution

We need to find bounds on K and \widetilde{K}.

$$
\left|f^{\prime}(x)\right|=\frac{8 x}{\left(1+4 x^{2}\right)^{2}} \Longrightarrow\left|f^{\prime}(x)\right| \leq \frac{8(1)}{\left(1+4(0)^{2}\right)^{2}}=8, \quad x \in[0,1]
$$

So $K \leq 8$. We can solve the constrained optimization problem on $[0,1]$ by finding roots of $f^{\prime \prime}$ on $[0,1]$.

$$
\left|f^{\prime \prime}(x)\right|=\left|\frac{128 x^{2}}{\left(1+4 x^{2}\right)^{3}}-\frac{8}{\left(1+4 x^{2}\right)^{2}}\right|=\frac{96 x^{2}-8}{\left(1+4 x^{2}\right)^{3}} \leq \frac{96(1)^{2}-8}{\left(1+4(0)^{2}\right)^{3}}=88
$$

Hence, $\tilde{K} \leq 88$.
Now we can compute bounds.

$$
e_{n}^{(L)} \leq \frac{(b-a)^{2}}{2 n} K \leq \frac{(1-0)^{2}}{2 n} 8=\frac{4}{n}
$$

To make sure that $e_{n}^{(L)}<10^{-4}$, we only need to require that $4 / n<10^{-4}$. We see that any $n>40000$ will do it. We have

$$
e_{n}^{(M)} \leq \frac{(b-a)^{3}}{24 n^{2}} \tilde{K} \leq \frac{(1-0)^{3}}{24 n^{2}} 88=\frac{11}{3} \frac{1}{n^{2}}
$$

To make sure that $e_{n}^{(M)}<10^{-4}$, we only need to require that $\frac{11}{3} \frac{1}{n^{2}}<10^{-4}$. We see that any $n \geq 192$ will do it. This is a much smaller n than in the left or right point approximations.

$$
e_{n}^{(T)} \leq \frac{(b-a)^{3}}{12 n^{2}} \tilde{K} \leq \frac{(1-0)^{3}}{12 n^{2}} 88=\frac{22}{3} \frac{1}{n^{2}} .
$$

To make sure that $e_{n}^{(T)}<10^{-4}$, we only need to require that $\frac{22}{3} \frac{1}{n^{2}}<10^{-4}$. We see that any $n \geq 271$ will do it. This is still a much smaller n than in the left or right point approximations.

