Homework 8

Due 03/13/2020

Denote $I = \int_{0}^{1} \frac{1}{1+4x^{2}} dx$.

- 1. Find the exact value of I (for example, by finding an antiderivative of the integrand).
- 2. For a generic positive integer n, we partition the interval [0,1] into n equal subintervals $[x_0, x_1], [x_1, x_2], \ldots, [x_{n-1}, x_n]$. Denote by L_n, R_n, M_n, T_n the Riemann sums corresponding to left-point, right-point, midpoint and trapezoid rule. Use sigma notation to write a formula for each L_n, R_n, M_n, T_n .
- 3. With the help of your calculator, compute L_4 , R_4 , M_4 , T_4 . Which of them is closest to I?
- 4. Write Matlab codes to compute L_n , R_n , M_n , T_n when n = 8, 16, 32, 64.
- 5. Denote by $e_n^{(L)} = |L_n I|$ the error term from left-point rule. We use similar notations for $e_n^{(R)}, e_n^{(M)}, e_n^{(T)}$. It is known that

$$e_n^{(L)}, e_n^{(R)} \le \frac{K(b-a)^2}{2n}, \quad e_n^{(M)} \le \frac{\tilde{K}(b-a)^3}{24n^2}, \quad e_n^{(T)} \le \frac{\tilde{K}(b-a)^3}{12n^2}$$

where $K = \max_{[a,b]} |f'(x)|$ and $\tilde{K} = \max_{[a,b]} |f''(x)|$. Find *n* such that the left-point rule gives an error not exceeding $\epsilon = 0.0001$. The same question for the right-point, midpoint, trapezoid rule.

Hint: you don't need to find the exact values of K and \tilde{K} . An upper bound for each of them would be sufficient for this problem.