Practice 2

In this note, we will practice inputing variables and plotting in Matlab.

1. Matlab considers every variable as a matrix. For example, the variable x in the following command
>> $\mathrm{x}=2$
is understood as a 1×1 matrix.
2. The command
```
>> x = 1 : 0.3 : 5
```

gives a row vector of real numbers starting with 1 , equally spaced by 0.3 , and not exceeding 5 . In this case, x is a vector of 14 numbers, or a matrix of size 1×14. To check the length of x, use the command

```
>> length(x)
```

3. Most built-in functions in Matlab take matrix as input. For example, with vector x as above, try the following:
```
>> sin(x)
>> sqrt(x)
>> log(x)
>> exp(x)
>> x - 1
>> 2*x
```

Matlab will compute sin, sqrt, logarithm, exponentiation, subtraction by 1 , multiplication by 2 , at each entry of the vector x.
4. However, to raise each entry of vector x to a power, one has to use the '.' operator. For example,

```
>> x.^2
>> x.^(-2)
>> 1./x
>> x^2
```

The last command gives an error because Matlab understands it as $x * x$. Because x is a 1×14 matrix, it cannot be multiplied by itself (incompatibility of dimension). It would be correct to multiply x by the its transpose, which has dimension 14×1.

```
>> x*transpose(x)
```

5. The entries of vector x are indexed from 1 to 14 (not from 0 to 13). To access the 9 th entry of x, for example, write
>> $x(9)$

Because x is a matrix of size 1×14, one can also write
>> $x(1,9)$
6. The basis syntax of the 'plot' command is ' $\operatorname{plot}(\mathrm{x}, \mathrm{y})$ ' where x and y are vectors of the same length. Mallab will plot the following points $(x(1), y(1)),(x(2), y(2)), \ldots,(x(n), y(n))$, where n is the common length of x and y, and then connect two consecutive points by a straight line segment. Try the following:

```
>> y = x."2
>> plot(x,y)
```

Sometimes, we want to customize the appearance of the plot by, for example, removing the line segments. Try the following commands:

```
>> plot(x,y,'.')
>> plot(x,y,'o')
>> plot(x,y,'-o')
>> plot(x,y,'.r')
```

To graph functions $y=x^{2}$ and $z=1 / x$ on the same plot, one can do as follows:

```
>> z = 1./x
>> plot(x,y,'b',x,z,'r')
```

To learn more options of the 'plot' command, type

```
>> help plot
```

7. The 'while' loop is used to repeat certain commands until a condition is false. The basic syntax is:
```
while (condition)
    commands
end
```

The condition in the 'while' loop is a logical statement, having value 1 if true, 0 if false. Try the following:

```
>> a = 1
>> b = 2
>> c = 3
>> a == b
>> a+b == c
>> a ~}= 
>> (a ~ = b) && (c ~ = b)
>> (a ~ = b) || (c == b)
```

Note that $\sim=$ denotes 'not equal to', \&\& denotes 'and', \|| denotes 'or'.

