MATH 351, MIDTERM EXAM, WINTER 2020

Name	Student ID

- Write your solution to each problem in a readable manner. Circle your final results.
- Show all your work. Answers not supported by valid arguments will get little or no credit. You can use the blank page on the back of the exam if you need more space.
- Doing correctly Problems $1,2,3,4,5$ will grant you 100% credit of the exam. You can earn extra credit by doing Problem 6.

Problem	Possible points	Earned points
1	10	
2	10	
3	10	
4	10	
5	10	
6	5	
Total	55	

Some formula:

$$
\begin{gathered}
n \geq \log _{2}\left(\frac{b-a}{\epsilon}\right)-1, \\
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \\
\left|x_{n+1}-\alpha\right| \leq C\left|x_{n}-\alpha\right|^{p} .
\end{gathered}
$$

Problem 1. (10 points) How big should n be so that e can be approximated by $1+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{n!}$ with error less than 0.001 ?

How big should n be so that

$$
e \approx 1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}
$$

with error $<10^{-3}$?
Consider function $f(x)=e^{x}$. The n^{\prime} th Taylor expansion of f is

$$
f(x)=e^{x}=\underbrace{1+\frac{x}{1!}+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}}_{P_{n}(x)}+R_{n}(x)
$$

For $x=1$:

$$
e=\underbrace{1+\frac{1}{l!}+\cdots+\frac{1}{n!}}_{p_{1}(1)}+R_{n}(1)
$$

The error term is $R_{n}(1)$. By Lagrange the orem,

$$
R_{n}(1)=\frac{f^{(n+1)}(u)}{(n+1)!}(1-0)^{n+1}=\frac{e^{c}}{(n+12!}
$$

for sone c between 0 and 1 .
Then

$$
0<R_{n}(1) \leqslant \frac{e}{(n+1)!}<\frac{3}{(n+1)!}
$$

To male sure that $R_{n}(1)<10^{-3}$, we choose large n such chat

$$
\frac{3}{(n+1)!}<10^{-3}
$$

By calculator, we see that $n \geqslant 6$ would do it.

Consider the following toy model of the IEEE double precision floating-point format: The sequence of 8 bits
represents a number $x=\sigma \cdot \bar{x} \cdot 2^{e}$ where σ, \bar{x}, e are determined as follows:

$$
\begin{aligned}
\sigma & =\left\{\begin{array}{lll}
1 & \text { if } & c_{0}=0 \\
-1 & \text { if } & c_{0}=1
\end{array}\right. \\
E & =\left(b_{1} b_{2} b_{3} b_{4}\right)_{2}
\end{aligned}
$$

- If $1 \leq E \leq 14$ then

$$
\begin{aligned}
& e=E-7, \\
& \bar{x}=\left(1 \cdot a_{1} a_{2} a_{3}\right)_{2}
\end{aligned}
$$

- If $E=0$ then $e=-6$ and $\bar{x}=\left(0 . a_{1} a_{2} a_{3}\right)_{2}$.
- If $E=15$ then $x= \pm \infty$ (depending on the sign σ).

Problem 2. (10 points) Write number 3.7 in this floating-point system (in form of $\sigma \cdot \bar{x} \cdot 2^{e}$).

$$
\begin{aligned}
& 3.7=3+0.7 \\
& 3=(11)_{2}
\end{aligned}
$$

Convert 0.7 into binary:

$$
\left.\begin{array}{l}
0.7 \times 2=1.4 \longrightarrow 1 \\
0.4 \times 2=0.8 \longrightarrow 0 \\
0.8 \times 2=1.6 \longrightarrow 1 \\
0.6 \times 2=1.2 \longrightarrow 0 \\
0.2 \times 2=0.4 \longrightarrow 0 \\
0.4 \times 2=0.8 \longrightarrow 0
\end{array}\right\} \text { repeated pattern. }
$$

Thus, $0.7=(0.1 \underbrace{0110} \underbrace{0110} \ldots)_{2}$
Then

$$
\begin{aligned}
3.7 & =(11.1 \underbrace{0110} \underbrace{0110} \ldots)_{2} \\
& =(1.1101100110 \ldots)_{2} \times 2^{1} \\
& \approx(1.111)_{2} \times 2^{1}
\end{aligned}
$$

Problem 3. (10 points) Let $x=(1.101)_{2} \times 2^{2}$ and $y=(1.011)_{2} \times 2^{3}$. Perform the multiplication $x \cdot y$ in the floating-point system given on the previous page.

$$
x . y=(1.101)_{2} \times(1.011)_{2} \times 2^{5}
$$

Multiply the significands:

$$
\begin{array}{r}
1.1001 \\
\times \begin{array}{lll}
1.0 & 1 & 1 \\
\hline 11 & 1 & 1
\end{array}
\end{array}
$$

$$
\begin{array}{cccc:c}
& 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & \vdots \\
1 & 1 & 0 & 1 & \vdots
\end{array} \vdots
$$

Then

$$
\begin{aligned}
x \cdot y & =(10.001111)_{2} \times 2^{5} \\
& =(1.0001111)_{2} \times 2^{6} \\
& \approx(1.001)_{2} \times 2^{6}
\end{aligned}
$$

Problem 4. (10 points)
(a) Sketch the graphs of $f(x)=\frac{1}{x}$ and $g(x)=x^{2}-1$.
(b) Use a suitable numerical method to find an approximate value of the x-coordinate of the intersection point of the two graphs on the half-plane $x>0$. The allowed error is 0.1 .

The intersection point solves the equation

$$
\frac{1}{x}=x^{2}-1
$$

which is equivalent to $x^{3}-x-1=0$.

$$
\text { Int } h(x)=x^{3}-x-1
$$

The picture gives us a hint that h as only one positive root and this root is larger than 1. We have

$$
h(1)=-1<0, \quad h(2)=5>0 .
$$

Thus, h as a root on the interval $[1,2]$.
we will use B isection method with the initial interval $\left[c_{0}, b\right]=[1,2]$.
The number of steps that need to be done is

$$
n \geqslant \log _{2} \frac{b_{0}-a_{0}}{2}-1=\log _{2} \frac{2-1}{0.1}-1 \approx 2.32
$$

Hence, $n=6$ stops would be sufficient

$$
\begin{aligned}
& a_{0}=1, b_{0}=2, \quad c_{0}=1.5, f\left(c_{0}\right)=0.875>0 . \\
& a_{1}=1, b_{1}=c_{0}=1.5, c_{1}=1.25, f\left(c_{1}\right)=-0.2968 \ldots<0 \\
& a_{2}=c_{1}=1.25, b_{2}=b_{1}=1.5, c_{2}=1.375, f\left(c_{2}\right)=0.22 \ldots>0 \\
& a_{3}=a_{2}=1.25, b_{3}=c_{2}=1.375, c_{3}=1.3125
\end{aligned}
$$

Problem 5. (10 points) Consider a sequence defined recursively as

$$
x_{n+1}=\frac{x_{n}^{3}-2 x_{n}^{2}+10}{5}, \quad x_{0}=1
$$

(1) Use your pocket calculator to guess the limit of this sequence. Then use the recursive formula to verify that this number is truly a limit of $\left(x_{n}\right)$.
(2) Find the order of convergence. If the order of convergence is 1 , find the linear rate of convergence.

$$
x_{1}=1.8, x_{2}=1.8764, x_{3}=1.909, x_{4}=1.9338, x_{5}=1.95 \ldots
$$

we guess that the limit is 2 .
To check if 2 is truly a limit of $\left(x_{n}\right)$, we put $a=2$. Take the limit of both sides:

$$
a=\frac{a^{3}-2 a^{2}+10}{5}
$$

This is equivalent to $a^{3}-2 a^{2}-5 a+10=0$.
Factor $a-2: \quad(a-2)\left(a^{2}-5\right)=0$
This gives $a=2$ and $a= \pm \sqrt{5}$.
Because the squence is close to 2 , the limit must be $a=2$.
Find order of Convergence:

$$
x_{n+1}-2=\frac{x_{n}^{3}-2 x_{n}^{2}+10}{5}-2=\frac{x_{n}^{3}-2 x_{n}^{2}}{5}=\frac{x_{n}^{2}\left(x_{n}-2\right)}{5}
$$

Take the absolute value of both sites:

$$
e_{n+1}=\frac{x_{n}^{2}}{5} e_{n} \approx \frac{4}{5} e_{n} \quad(w \text { hen } n \text { is large })
$$

Thus, the order of convergence is 1 and the linear rate of convergence is $4 / 5$.

Problem 6. (5 points) Give an example of a function f and a real number x_{0} such that the iteration formula of the Newton's method, starting with x_{0}, gives a divergent sequence. Explain your example.

$$
\begin{aligned}
& f(x)=x^{3}-5 x, x_{0}=1 \\
& f^{\prime}(x)=3 x^{2}-5 \\
& x_{n+1}=x_{n}-\frac{x_{n}^{3}-5 x_{n}}{3 x_{n}^{2}-5}=\frac{2 x_{n}^{3}}{3 x_{n}^{2}-5} .
\end{aligned}
$$

We get $x_{1}=-1, x_{2}=1, x_{3}=-1, x_{4}=1, \ldots$
This sequence discrges.

Note: there are a lot of other examples. Start with a function f that has no roots. For example $f(x)=x^{2}+l$. Then x_{n} will diverge.

$$
x_{n+1}=x_{n}-\frac{x_{n}^{2}+1}{2 x_{n}}=\frac{x_{n}^{2}-1}{2 x_{n}}=\frac{x_{n}}{2}-\frac{1}{2 x_{n}} .
$$

with $x_{0}=2$, we get $x_{1}=\frac{3}{4}, x_{2}=-0.29, x_{3}=1.568 \ldots$

$$
x_{4}=0.465, \ldots
$$

