1. Approximate the value of e with acceptable error $\epsilon=10^{-3}$ by using Taylor approximation for the function $f(x)=e^{x}$ about $x_{0}=0$.

Note that $e=f(1)$. We have

$$
f(x)=f^{\prime}(x)=f^{\prime \prime}(x)=f^{(3)}(x)=\ldots=e^{x}
$$

and $f(0)=f^{\prime}(0)=f^{\prime \prime}(0)=\cdots=1$.
The nth Taylor polynomial of f is

$$
\begin{aligned}
p_{n}(x) & =f(0)+\frac{f^{\prime}(0)}{1!}(x-0)+\frac{f^{\prime \prime}(0)}{2!}(x-0)^{2}+\cdots+\frac{f^{(n)}(0)}{n!}(x-0)^{n} \\
& =1+\frac{1}{1!} x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\cdots+\frac{1}{n!} x^{n} .
\end{aligned}
$$

we have

$$
f(x)=p_{n}(x)+\underbrace{R_{n}(x)}_{\text {remainder }}
$$

At $x=1$,

$$
f(1)=p_{n}(1)+R_{n}(1)
$$

By Lagrange formula,

$$
R_{n}(1)=\frac{f^{(n+1)}(c)}{(n+1)!}(1-0)^{n+1}=\frac{f^{(n+1)}(c)}{(n+1)!}=\frac{e^{c}}{(n+1)!}
$$

where c is some number between $x_{0}=0$ and $x=1$.
Then

$$
\left|R_{n}(1)\right|=\frac{e^{c}}{(n+1)!}<\frac{e}{(n+1)!}<\frac{3}{(n+1)!}
$$

To make sure that $\left|\mathbb{R}_{n}(1)\right|<10^{-3}$, we need to choose n sufficiently large such that

$$
\frac{3}{(n+1)!}<10^{-3}
$$

Using calculator, we can choose $n=6$. Then

$$
\begin{aligned}
e=f(1) \approx p_{6}(1) & =1+\frac{1}{11}+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{6!} \\
& \approx 2.7181 \quad \text { (using calculator) }
\end{aligned}
$$

One can also write a Matlab program to compute this sum.

$$
\begin{aligned}
& \text { in a } \\
& \text { script } \\
& \text { file }(. \mathrm{m})
\end{aligned}\left[\begin{array}{l}
s=1 ; \\
\text { for } k=1: 6 \\
s=s+1 / \text { factorial }(k) \text {; } \\
\text { end } \\
s
\end{array}\right.
$$

2. How large should n be so that the function $f(x)=e^{-2 x}$ can be approximated by its n 'th Taylor polynomial $p_{n}(x)$ within error tolerance $\epsilon=10^{-6}$ for all $x \in(-2,1)$?

We already know that

$$
g(t)=e^{t}=1 t \frac{t}{1!}+\frac{t^{2}}{21}+\frac{t^{3}}{3!}+\cdots+\frac{t^{n}}{n!}+R_{n}(t)
$$

Replace t by $-2 x$:

$$
\underbrace{e^{-2 x}}_{f(x)}=\underbrace{1+\frac{-2 x}{1!}+\frac{(-2 x)^{2}}{2!}+\frac{(-2 x)^{3}}{3!}+\cdots+\frac{(-2 x)^{n}}{n!}}_{q_{n}(x)}+\underbrace{R_{n}(-2 x)}_{\widetilde{R}_{n}(x)}
$$

(the with Taylor prog. of f) (the remainder)
We wait to find n such that $|\tilde{R}(x)|=\left|R_{n}(-2 x)\right|<10^{-6}$.
Put $t=-2 x$.
Apply Lagrange's theorem for function g :

$$
R_{n}(t)=\frac{g^{(n+1)}(c)}{(n+1)!} t^{n+1}=\frac{e^{c}}{(n+1)!} t^{n+1}
$$

where c is some number between 0 and $t=-2 x$. when x varies on $(-2,1), t=-2 x$ varies on $(-2,4)$.

we see that c must lie between -2 and 4 . Thus,

$$
\left|R_{n}(-2 x)\right|=\frac{e^{c}}{(n+1)!}|-2 x|^{n+1} \leq \frac{e^{4} 4^{n+1}}{(n+1)!}<\frac{3^{4} 4^{n+1}}{(n+1)!}=\frac{81 \cdot 4^{n+1}}{(n+1)!}
$$

Therefore, the error term $\widetilde{R}_{n}(x)$ is bounded by

$$
\left|\tilde{R_{n}}(x)\right|<\frac{81 \cdot 4^{n+1}}{(n+1)!} \quad \forall x \in(-2,1)
$$

To make sure that $\left|\widetilde{R}_{n}(x)\right|<10^{-6}$ for all $x \in\left(-2_{L}\right)$, we only need to choose n such that

$$
\frac{81.4^{n+1}}{(n+1)!}<10^{-6}
$$

$n=20$ will do it (checking by calculator).

