Worksheet
$1 / 17 / 2020$

1. Find approximately the value of largest positive number and the smallest that can be represented precisely by the double precision floating-point format. How big is the dynamic range

$$
\begin{aligned}
& \text { of this format? } \\
& x=6 \cdot \bar{x} \cdot 2^{e} \\
& \text { Only consider } r=1 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
& x_{\text {max }}=\frac{\left(1 . \frac{11 \ldots 1}{52}\right)_{2} \cdot 2^{1023}}{} \approx 2 \cdot 2^{1023}=2^{1024} \\
& \approx 8.989 \times 10^{307}
\end{aligned} \\
& x_{\text {min }}=(0.0 \ldots 01)_{2} \times 2^{-1022}=2^{-52} \times 2^{-1022} \\
& =2^{-1074} \text {. } \\
& \text { Dynamic range }=\frac{x_{\max }}{x_{\text {min }}} \approx \frac{2^{1024}}{2^{-1074}}=2^{2098} .
\end{aligned}
$$

2. Write number 1 in form of $\sigma \cdot \bar{x} \cdot 2^{e}$.

$$
1=1 \cdot(1.00 \ldots 0) \cdot 2^{0}
$$

3. Let s be the smallest number greater than 1 that can be represented precisely by the double precision floating-point format. Write s in form of $\sigma \cdot \bar{x} \cdot 2^{e}$.

$$
\begin{aligned}
s=1 \cdot(1 . \underbrace{00 \cdot \ldots 01}_{51})_{2} \cdot 2^{0} & =1+2^{-52} \\
& \approx \ldots
\end{aligned}
$$

4. The difference $s-1$ is called the machine ϵ of the floating-point format. How big is the machine ϵ of the double precision floating-point format?

$$
\varepsilon=s-1=2^{-52} \approx \ldots
$$

